1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
  | 
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ImpredicativeTypes #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module AST (module AST, module AST.Types, module AST.Accum, module AST.Weaken) where
import Data.Functor.Const
import Data.Functor.Identity
import Data.Int (Int64)
import Data.Kind (Type)
import Array
import AST.Accum
import AST.Sparse.Types
import AST.Types
import AST.Weaken
import CHAD.Types
import Data
-- General assumption: head of the list (whatever way it is associated) is the
-- inner variable / inner array dimension. In pretty printing, the inner
-- variable / inner dimension is printed on the _right_.
--
-- All the monoid operations are unsupposed as the input to CHAD, and are
-- intended to be eliminated after simplification, so that the input program as
-- well as the output program do not contain these constructors.
-- TODO: ensure this by a "stage" type parameter.
type Expr :: (Ty -> Type) -> [Ty] -> Ty -> Type
data Expr x env t where
  -- lambda calculus
  EVar :: x t -> STy t -> Idx env t -> Expr x env t
  ELet :: x t -> Expr x env a -> Expr x (a : env) t -> Expr x env t
  -- base types
  EPair :: x (TPair a b) -> Expr x env a -> Expr x env b -> Expr x env (TPair a b)
  EFst :: x a -> Expr x env (TPair a b) -> Expr x env a
  ESnd :: x b -> Expr x env (TPair a b) -> Expr x env b
  ENil :: x TNil -> Expr x env TNil
  EInl :: x (TEither a b) -> STy b -> Expr x env a -> Expr x env (TEither a b)
  EInr :: x (TEither a b) -> STy a -> Expr x env b -> Expr x env (TEither a b)
  ECase :: x c -> Expr x env (TEither a b) -> Expr x (a : env) c -> Expr x (b : env) c -> Expr x env c
  ENothing :: x (TMaybe t) -> STy t -> Expr x env (TMaybe t)
  EJust :: x (TMaybe t) -> Expr x env t -> Expr x env (TMaybe t)
  EMaybe :: x b -> Expr x env b -> Expr x (t : env) b -> Expr x env (TMaybe t) -> Expr x env b
  -- array operations
  EConstArr :: Show (ScalRep t) => x (TArr n (TScal t)) -> SNat n -> SScalTy t -> Array n (ScalRep t) -> Expr x env (TArr n (TScal t))
  EBuild :: x (TArr n t) -> SNat n -> Expr x env (Tup (Replicate n TIx)) -> Expr x (Tup (Replicate n TIx) : env) t -> Expr x env (TArr n t)
  EMap :: x (TArr n t) -> Expr x (a : env) t -> Expr x env (TArr n a) -> Expr x env (TArr n t)
  -- bottommost t in 't : t : env' is the rightmost argument (environments grow to the right)
  EFold1Inner :: x (TArr n t) -> Commutative -> Expr x (t : t : env) t -> Expr x env t -> Expr x env (TArr (S n) t) -> Expr x env (TArr n t)
  ESum1Inner :: ScalIsNumeric t ~ True => x (TArr n (TScal t)) -> Expr x env (TArr (S n) (TScal t)) -> Expr x env (TArr n (TScal t))
  EUnit :: x (TArr Z t) -> Expr x env t -> Expr x env (TArr Z t)
  EReplicate1Inner :: x (TArr (S n) t) -> Expr x env TIx -> Expr x env (TArr n t) -> Expr x env (TArr (S n) t)
  EMaximum1Inner :: ScalIsNumeric t ~ True => x (TArr n (TScal t)) -> Expr x env (TArr (S n) (TScal t)) -> Expr x env (TArr n (TScal t))
  EMinimum1Inner :: ScalIsNumeric t ~ True => x (TArr n (TScal t)) -> Expr x env (TArr (S n) (TScal t)) -> Expr x env (TArr n (TScal t))
  EReshape :: x (TArr n t) -> SNat n -> Expr x env (Tup (Replicate n TIx)) -> Expr x env (TArr m t) -> Expr x env (TArr n t)
  EZip :: x (TArr n (TPair a b)) -> Expr x env (TArr n a) -> Expr x env (TArr n b) -> Expr x env (TArr n (TPair a b))
  -- Primal of EFold1Inner. Looks like a mapAccumL, but differs semantically:
  -- an implementation is allowed to parallelise this thing and store the b
  -- values in some implementation-defined order.
  -- TODO: For a parallel implementation some data will probably need to be stored about the reduction order in addition to simply the array of bs.
  EFold1InnerD1 :: x (TPair (TArr n t1) (TArr (S n) b)) -> Commutative
                -> Expr x (t1 : t1 : env) (TPair t1 b)
                -> Expr x env t1
                -> Expr x env (TArr (S n) t1)
                -> Expr x env (TPair (TArr n t1)  -- normal primal fold output
                                     (TArr (S n) b))  -- additional stores; usually: (prescanl, the tape stores)
  -- Reverse derivative of EFold1Inner. The contributions to the initial
  -- element are not yet added together here; we assume a later fusion system
  -- does that for us.
  EFold1InnerD2 :: x (TPair (TArr n t2) (TArr (S n) t2)) -> Commutative
                -> Expr x (t2 : b : env) (TPair t2 t2)  -- reverse derivative of function (should contribute to free variables via accumulation)
                -> Expr x env (TArr (S n) b)  -- stores from EFold1InnerD1
                -> Expr x env (TArr n t2)  -- incoming cotangent
                -> Expr x env (TPair (TArr n t2) (TArr (S n) t2))  -- outgoing cotangents to x0 (not summed) and input array
  -- expression operations
  EConst :: Show (ScalRep t) => x (TScal t) -> SScalTy t -> ScalRep t -> Expr x env (TScal t)
  EIdx0 :: x t -> Expr x env (TArr Z t) -> Expr x env t
  EIdx1 :: x (TArr n t) -> Expr x env (TArr (S n) t) -> Expr x env TIx -> Expr x env (TArr n t)
  EIdx :: x t -> Expr x env (TArr n t) -> Expr x env (Tup (Replicate n TIx)) -> Expr x env t
  EShape :: x (Tup (Replicate n TIx)) -> Expr x env (TArr n t) -> Expr x env (Tup (Replicate n TIx))
  EOp :: x t -> SOp a t -> Expr x env a -> Expr x env t
  -- custom derivatives
  -- 'b' is the part of the input of the operation that derivatives should
  -- be backpropagated to; 'a' is the inactive part. The dual field of
  -- ECustom does not allow a derivative to be generated for 'a', and hence
  -- none is propagated.
  -- No accumulators are allowed inside a, b and tape. This restriction is
  -- currently not used very much, so could be relaxed in the future; be sure
  -- to check this requirement whenever it is necessary for soundness!
  ECustom :: x t -> STy a -> STy b -> STy tape
          -> Expr x [b, a] t  -- ^ regular operation
          -> Expr x [D1 b, D1 a] (TPair (D1 t) tape)  -- ^ CHAD forward pass
          -> Expr x [D2 t, tape] (D2 b)  -- ^ CHAD reverse derivative
          -> Expr x env a -> Expr x env b
          -> Expr x env t
  -- fake halfway checkpointing
  ERecompute :: x t -> Expr x env t -> Expr x env t
  -- accumulation effect on monoids
  -- | The initialiser for an accumulator __MUST__ be deep! If it is zero, it
  -- must be EDeepZero, not just EZero. This is to ensure that EAccum does not
  -- need to create any zeros.
  EWith :: x (TPair a t) -> SMTy t -> Expr x env t -> Expr x (TAccum t : env) a -> Expr x env (TPair a t)
  -- The 'Sparse' here is eliminated to dense by UnMonoid.
  EAccum :: x TNil -> SMTy t -> SAcPrj p t a -> Expr x env (AcIdxD p t) -> Sparse a b -> Expr x env b -> Expr x env (TAccum t) -> Expr x env TNil
  -- monoidal operations (to be desugared to regular operations after simplification)
  EZero :: x t -> SMTy t -> Expr x env (ZeroInfo t) -> Expr x env t
  EDeepZero :: x t -> SMTy t -> Expr x env (DeepZeroInfo t) -> Expr x env t
  EPlus :: x t -> SMTy t -> Expr x env t -> Expr x env t -> Expr x env t
  EOneHot :: x t -> SMTy t -> SAcPrj p t a -> Expr x env (AcIdxS p t) -> Expr x env a -> Expr x env t
  -- interface of abstract monoidal types
  ELNil :: x (TLEither a b) -> STy a -> STy b -> Expr x env (TLEither a b)
  ELInl :: x (TLEither a b) -> STy b -> Expr x env a -> Expr x env (TLEither a b)
  ELInr :: x (TLEither a b) -> STy a -> Expr x env b -> Expr x env (TLEither a b)
  ELCase :: x c -> Expr x env (TLEither a b) -> Expr x env c -> Expr x (a : env) c -> Expr x (b : env) c -> Expr x env c
  -- partiality
  EError :: x a -> STy a -> String -> Expr x env a
deriving instance (forall ty. Show (x ty)) => Show (Expr x env t)
type Ex = Expr (Const ())
ext :: Const () a
ext = Const ()
data Commutative = Commut | Noncommut
  deriving (Show)
type SOp :: Ty -> Ty -> Type
data SOp a t where
  OAdd :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a)
  OMul :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a)
  ONeg :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TScal a) (TScal a)
  OLt :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
  OLe :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
  OEq :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
  ONot :: SOp (TScal TBool) (TScal TBool)
  OAnd :: SOp (TPair (TScal TBool) (TScal TBool)) (TScal TBool)
  OOr :: SOp (TPair (TScal TBool) (TScal TBool)) (TScal TBool)
  OIf :: SOp (TScal TBool) (TEither TNil TNil)  -- True is Left, False is Right
  ORound64 :: SOp (TScal TF64) (TScal TI64)
  OToFl64 :: SOp (TScal TI64) (TScal TF64)
  ORecip :: ScalIsFloating a ~ True => SScalTy a -> SOp (TScal a) (TScal a)
  OExp :: ScalIsFloating a ~ True => SScalTy a -> SOp (TScal a) (TScal a)
  OLog :: ScalIsFloating a ~ True => SScalTy a -> SOp (TScal a) (TScal a)
  OIDiv :: ScalIsIntegral a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a)
  OMod :: ScalIsIntegral a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a)
deriving instance Show (SOp a t)
opt1 :: SOp a t -> STy a
opt1 = \case
  OAdd t -> STPair (STScal t) (STScal t)
  OMul t -> STPair (STScal t) (STScal t)
  ONeg t -> STScal t
  OLt t -> STPair (STScal t) (STScal t)
  OLe t -> STPair (STScal t) (STScal t)
  OEq t -> STPair (STScal t) (STScal t)
  ONot -> STScal STBool
  OAnd -> STPair (STScal STBool) (STScal STBool)
  OOr -> STPair (STScal STBool) (STScal STBool)
  OIf -> STScal STBool
  ORound64 -> STScal STF64
  OToFl64 -> STScal STI64
  ORecip t -> STScal t
  OExp t -> STScal t
  OLog t -> STScal t
  OIDiv t -> STPair (STScal t) (STScal t)
  OMod t -> STPair (STScal t) (STScal t)
opt2 :: SOp a t -> STy t
opt2 = \case
  OAdd t -> STScal t
  OMul t -> STScal t
  ONeg t -> STScal t
  OLt _ -> STScal STBool
  OLe _ -> STScal STBool
  OEq _ -> STScal STBool
  ONot -> STScal STBool
  OAnd -> STScal STBool
  OOr -> STScal STBool
  OIf -> STEither STNil STNil
  ORound64 -> STScal STI64
  OToFl64 -> STScal STF64
  ORecip t -> STScal t
  OExp t -> STScal t
  OLog t -> STScal t
  OIDiv t -> STScal t
  OMod t -> STScal t
typeOf :: Expr x env t -> STy t
typeOf = \case
  EVar _ t _ -> t
  ELet _ _ e -> typeOf e
  EPair _ a b -> STPair (typeOf a) (typeOf b)
  EFst _ e | STPair t _ <- typeOf e -> t
  ESnd _ e | STPair _ t <- typeOf e -> t
  ENil _ -> STNil
  EInl _ t2 e -> STEither (typeOf e) t2
  EInr _ t1 e -> STEither t1 (typeOf e)
  ECase _ _ a _ -> typeOf a
  ENothing _ t -> STMaybe t
  EJust _ e -> STMaybe (typeOf e)
  EMaybe _ e _ _ -> typeOf e
  ELNil _ t1 t2 -> STLEither t1 t2
  ELInl _ t2 e -> STLEither (typeOf e) t2
  ELInr _ t1 e -> STLEither t1 (typeOf e)
  ELCase _ _ a _ _ -> typeOf a
  EConstArr _ n t _ -> STArr n (STScal t)
  EBuild _ n _ e -> STArr n (typeOf e)
  EMap _ a b | STArr n _ <- typeOf b -> STArr n (typeOf a)
  EFold1Inner _ _ _ _ e | STArr (SS n) t <- typeOf e -> STArr n t
  ESum1Inner _ e | STArr (SS n) t <- typeOf e -> STArr n t
  EUnit _ e -> STArr SZ (typeOf e)
  EReplicate1Inner _ _ e | STArr n t <- typeOf e -> STArr (SS n) t
  EMaximum1Inner _ e | STArr (SS n) t <- typeOf e -> STArr n t
  EMinimum1Inner _ e | STArr (SS n) t <- typeOf e -> STArr n t
  EReshape _ n _ e | STArr _ t <- typeOf e -> STArr n t
  EZip _ a b | STArr n t1 <- typeOf a, STArr _ t2 <- typeOf b -> STArr n (STPair t1 t2)
  EFold1InnerD1 _ _ e1 _ e3 | STPair t1 tb <- typeOf e1, STArr (SS n) _ <- typeOf e3 -> STPair (STArr n t1) (STArr (SS n) tb)
  EFold1InnerD2 _ _ _ _ e3 | STArr n t2 <- typeOf e3 -> STPair (STArr n t2) (STArr (SS n) t2)
  EConst _ t _ -> STScal t
  EIdx0 _ e | STArr _ t <- typeOf e -> t
  EIdx1 _ e _ | STArr (SS n) t <- typeOf e -> STArr n t
  EIdx _ e _ | STArr _ t <- typeOf e -> t
  EShape _ e | STArr n _ <- typeOf e -> tTup (sreplicate n tIx)
  EOp _ op _ -> opt2 op
  ECustom _ _ _ _ e _ _ _ _ -> typeOf e
  ERecompute _ e -> typeOf e
  EWith _ _ e1 e2 -> STPair (typeOf e2) (typeOf e1)
  EAccum _ _ _ _ _ _ _ -> STNil
  EZero _ t _ -> fromSMTy t
  EDeepZero _ t _ -> fromSMTy t
  EPlus _ t _ _ -> fromSMTy t
  EOneHot _ t _ _ _ -> fromSMTy t
  EError _ t _ -> t
extOf :: Expr x env t -> x t
extOf = \case
  EVar x _ _ -> x
  ELet x _ _ -> x
  EPair x _ _ -> x
  EFst x _ -> x
  ESnd x _ -> x
  ENil x -> x
  EInl x _ _ -> x
  EInr x _ _ -> x
  ECase x _ _ _ -> x
  ENothing x _ -> x
  EJust x _ -> x
  EMaybe x _ _ _ -> x
  ELNil x _ _ -> x
  ELInl x _ _ -> x
  ELInr x _ _ -> x
  ELCase x _ _ _ _ -> x
  EConstArr x _ _ _ -> x
  EBuild x _ _ _ -> x
  EMap x _ _ -> x
  EFold1Inner x _ _ _ _ -> x
  ESum1Inner x _ -> x
  EUnit x _ -> x
  EReplicate1Inner x _ _ -> x
  EMaximum1Inner x _ -> x
  EMinimum1Inner x _ -> x
  EReshape x _ _ _ -> x
  EZip x _ _ -> x
  EFold1InnerD1 x _ _ _ _ -> x
  EFold1InnerD2 x _ _ _ _ -> x
  EConst x _ _ -> x
  EIdx0 x _ -> x
  EIdx1 x _ _ -> x
  EIdx x _ _ -> x
  EShape x _ -> x
  EOp x _ _ -> x
  ECustom x _ _ _ _ _ _ _ _ -> x
  ERecompute x _ -> x
  EWith x _ _ _ -> x
  EAccum x _ _ _ _ _ _ -> x
  EZero x _ _ -> x
  EDeepZero x _ _ -> x
  EPlus x _ _ _ -> x
  EOneHot x _ _ _ _ -> x
  EError x _ _ -> x
mapExt :: (forall a. x a -> x' a) -> Expr x env t -> Expr x' env t
mapExt f = runIdentity . travExt (Identity . f)
{-# SPECIALIZE travExt :: (forall a. x a -> Identity (x' a)) -> Expr x env t -> Identity (Expr x' env t) #-}
travExt :: Applicative f => (forall a. x a -> f (x' a)) -> Expr x env t -> f (Expr x' env t)
travExt f = \case
  EVar x t i -> EVar <$> f x <*> pure t <*> pure i
  ELet x rhs body -> ELet <$> f x <*> travExt f rhs <*> travExt f body
  EPair x a b -> EPair <$> f x <*> travExt f a <*> travExt f b
  EFst x e -> EFst <$> f x <*> travExt f e
  ESnd x e -> ESnd <$> f x <*> travExt f e
  ENil x -> ENil <$> f x
  EInl x t e -> EInl <$> f x <*> pure t <*> travExt f e
  EInr x t e -> EInr <$> f x <*> pure t <*> travExt f e
  ECase x e a b -> ECase <$> f x <*> travExt f e <*> travExt f a <*> travExt f b
  ENothing x t -> ENothing <$> f x <*> pure t
  EJust x e -> EJust <$> f x <*> travExt f e
  EMaybe x a b e -> EMaybe <$> f x <*> travExt f a <*> travExt f b <*> travExt f e
  ELNil x t1 t2 -> ELNil <$> f x <*> pure t1 <*> pure t2
  ELInl x t e -> ELInl <$> f x <*> pure t <*> travExt f e
  ELInr x t e -> ELInr <$> f x <*> pure t <*> travExt f e
  ELCase x e a b c -> ELCase <$> f x <*> travExt f e <*> travExt f a <*> travExt f b <*> travExt f c
  EConstArr x n t a -> EConstArr <$> f x <*> pure n <*> pure t <*> pure a
  EBuild x n a b -> EBuild <$> f x <*> pure n <*> travExt f a <*> travExt f b
  EMap x a b -> EMap <$> f x <*> travExt f a <*> travExt f b
  EFold1Inner x cm a b c -> EFold1Inner <$> f x <*> pure cm <*> travExt f a <*> travExt f b <*> travExt f c
  ESum1Inner x e -> ESum1Inner <$> f x <*> travExt f e
  EUnit x e -> EUnit <$> f x <*> travExt f e
  EReplicate1Inner x a b -> EReplicate1Inner <$> f x <*> travExt f a <*> travExt f b
  EMaximum1Inner x e -> EMaximum1Inner <$> f x <*> travExt f e
  EMinimum1Inner x e -> EMinimum1Inner <$> f x <*> travExt f e
  EZip x a b -> EZip <$> f x <*> travExt f a <*> travExt f b
  EReshape x n a b -> EReshape <$> f x <*> pure n <*> travExt f a <*> travExt f b
  EFold1InnerD1 x cm a b c -> EFold1InnerD1 <$> f x <*> pure cm <*> travExt f a <*> travExt f b <*> travExt f c
  EFold1InnerD2 x cm a b c -> EFold1InnerD2 <$> f x <*> pure cm <*> travExt f a <*> travExt f b <*> travExt f c
  EConst x t v -> EConst <$> f x <*> pure t <*> pure v
  EIdx0 x e -> EIdx0 <$> f x <*> travExt f e
  EIdx1 x a b -> EIdx1 <$> f x <*> travExt f a <*> travExt f b
  EIdx x e es -> EIdx <$> f x <*> travExt f e <*> travExt f es
  EShape x e -> EShape <$> f x <*> travExt f e
  EOp x op e -> EOp <$> f x <*> pure op <*> travExt f e
  ECustom x s t p a b c e1 e2 -> ECustom <$> f x <*> pure s <*> pure t <*> pure p <*> travExt f a <*> travExt f b <*> travExt f c <*> travExt f e1 <*> travExt f e2
  ERecompute x e -> ERecompute <$> f x <*> travExt f e
  EWith x t e1 e2 -> EWith <$> f x <*> pure t <*> travExt f e1 <*> travExt f e2
  EAccum x t p e1 sp e2 e3 -> EAccum <$> f x <*> pure t <*> pure p <*> travExt f e1 <*> pure sp <*> travExt f e2 <*> travExt f e3
  EZero x t e -> EZero <$> f x <*> pure t <*> travExt f e
  EDeepZero x t e -> EDeepZero <$> f x <*> pure t <*> travExt f e
  EPlus x t a b -> EPlus <$> f x <*> pure t <*> travExt f a <*> travExt f b
  EOneHot x t p a b -> EOneHot <$> f x <*> pure t <*> pure p <*> travExt f a <*> travExt f b
  EError x t s -> EError <$> f x <*> pure t <*> pure s
substInline :: Expr x env a -> Expr x (a : env) t -> Expr x env t
substInline repl =
  subst $ \x t -> \case IZ -> repl
                        IS i -> EVar x t i
subst0 :: Ex (b : env) a -> Ex (a : env) t -> Ex (b : env) t
subst0 repl =
  subst $ \_ t -> \case IZ -> repl
                        IS i -> EVar ext t (IS i)
subst :: (forall a. x a -> STy a -> Idx env a -> Expr x env' a)
      -> Expr x env t -> Expr x env' t
subst f = subst' (\x t w i -> weakenExpr w (f x t i)) WId
subst' :: (forall a env2. x a -> STy a -> env' :> env2 -> Idx env a -> Expr x env2 a)
       -> env' :> envOut
       -> Expr x env t
       -> Expr x envOut t
subst' f w = \case
  EVar x t i -> f x t w i
  ELet x rhs body -> ELet x (subst' f w rhs) (subst' (sinkF f) (WCopy w) body)
  EPair x a b -> EPair x (subst' f w a) (subst' f w b)
  EFst x e -> EFst x (subst' f w e)
  ESnd x e -> ESnd x (subst' f w e)
  ENil x -> ENil x
  EInl x t e -> EInl x t (subst' f w e)
  EInr x t e -> EInr x t (subst' f w e)
  ECase x e a b -> ECase x (subst' f w e) (subst' (sinkF f) (WCopy w) a) (subst' (sinkF f) (WCopy w) b)
  ENothing x t -> ENothing x t
  EJust x e -> EJust x (subst' f w e)
  EMaybe x a b e -> EMaybe x (subst' f w a) (subst' (sinkF f) (WCopy w) b) (subst' f w e)
  ELNil x t1 t2 -> ELNil x t1 t2
  ELInl x t e -> ELInl x t (subst' f w e)
  ELInr x t e -> ELInr x t (subst' f w e)
  ELCase x e a b c -> ELCase x (subst' f w e) (subst' f w a) (subst' (sinkF f) (WCopy w) b) (subst' (sinkF f) (WCopy w) c)
  EConstArr x n t a -> EConstArr x n t a
  EBuild x n a b -> EBuild x n (subst' f w a) (subst' (sinkF f) (WCopy w) b)
  EMap x a b -> EMap x (subst' (sinkF f) (WCopy w) a) (subst' f w b)
  EFold1Inner x cm a b c -> EFold1Inner x cm (subst' (sinkF (sinkF f)) (WCopy (WCopy w)) a) (subst' f w b) (subst' f w c)
  ESum1Inner x e -> ESum1Inner x (subst' f w e)
  EUnit x e -> EUnit x (subst' f w e)
  EReplicate1Inner x a b -> EReplicate1Inner x (subst' f w a) (subst' f w b)
  EMaximum1Inner x e -> EMaximum1Inner x (subst' f w e)
  EMinimum1Inner x e -> EMinimum1Inner x (subst' f w e)
  EReshape x n a b -> EReshape x n (subst' f w a) (subst' f w b)
  EZip x a b -> EZip x (subst' f w a) (subst' f w b)
  EFold1InnerD1 x cm a b c -> EFold1InnerD1 x cm (subst' (sinkF (sinkF f)) (WCopy (WCopy w)) a) (subst' f w b) (subst' f w c)
  EFold1InnerD2 x cm a b c -> EFold1InnerD2 x cm (subst' (sinkF (sinkF f)) (WCopy (WCopy w)) a) (subst' f w b) (subst' f w c)
  EConst x t v -> EConst x t v
  EIdx0 x e -> EIdx0 x (subst' f w e)
  EIdx1 x a b -> EIdx1 x (subst' f w a) (subst' f w b)
  EIdx x e es -> EIdx x (subst' f w e) (subst' f w es)
  EShape x e -> EShape x (subst' f w e)
  EOp x op e -> EOp x op (subst' f w e)
  ECustom x s t p a b c e1 e2 -> ECustom x s t p a b c (subst' f w e1) (subst' f w e2)
  ERecompute x e -> ERecompute x (subst' f w e)
  EWith x t e1 e2 -> EWith x t (subst' f w e1) (subst' (sinkF f) (WCopy w) e2)
  EAccum x t p e1 sp e2 e3 -> EAccum x t p (subst' f w e1) sp (subst' f w e2) (subst' f w e3)
  EZero x t e -> EZero x t (subst' f w e)
  EDeepZero x t e -> EDeepZero x t (subst' f w e)
  EPlus x t a b -> EPlus x t (subst' f w a) (subst' f w b)
  EOneHot x t p a b -> EOneHot x t  p (subst' f w a) (subst' f w b)
  EError x t s -> EError x t s
  where
    sinkF :: (forall a. x a -> STy a -> (env' :> env2) -> Idx env a -> Expr x env2 a)
          -> x t -> STy t -> ((b : env') :> env2) -> Idx (b : env) t -> Expr x env2 t
    sinkF f' x' t w' = \case
      IZ -> EVar x' t (w' @> IZ)
      IS i -> f' x' t (WPop w') i
weakenExpr :: env :> env' -> Expr x env t -> Expr x env' t
weakenExpr = subst' (\x t w' i -> EVar x t (w' @> i))
class KnownScalTy t where knownScalTy :: SScalTy t
instance KnownScalTy TI32 where knownScalTy = STI32
instance KnownScalTy TI64 where knownScalTy = STI64
instance KnownScalTy TF32 where knownScalTy = STF32
instance KnownScalTy TF64 where knownScalTy = STF64
instance KnownScalTy TBool where knownScalTy = STBool
class KnownTy t where knownTy :: STy t
instance KnownTy TNil where knownTy = STNil
instance (KnownTy s, KnownTy t) => KnownTy (TPair s t) where knownTy = STPair knownTy knownTy
instance (KnownTy s, KnownTy t) => KnownTy (TEither s t) where knownTy = STEither knownTy knownTy
instance (KnownTy s, KnownTy t) => KnownTy (TLEither s t) where knownTy = STLEither knownTy knownTy
instance KnownTy t => KnownTy (TMaybe t) where knownTy = STMaybe knownTy
instance (KnownNat n, KnownTy t) => KnownTy (TArr n t) where knownTy = STArr knownNat knownTy
instance KnownScalTy t => KnownTy (TScal t) where knownTy = STScal knownScalTy
instance KnownMTy t => KnownTy (TAccum t) where knownTy = STAccum knownMTy
class KnownMTy t where knownMTy :: SMTy t
instance KnownMTy TNil where knownMTy = SMTNil
instance (KnownMTy s, KnownMTy t) => KnownMTy (TPair s t) where knownMTy = SMTPair knownMTy knownMTy
instance KnownMTy t => KnownMTy (TMaybe t) where knownMTy = SMTMaybe knownMTy
instance (KnownMTy s, KnownMTy t) => KnownMTy (TLEither s t) where knownMTy = SMTLEither knownMTy knownMTy
instance (KnownNat n, KnownMTy t) => KnownMTy (TArr n t) where knownMTy = SMTArr knownNat knownMTy
instance (KnownScalTy t, ScalIsNumeric t ~ True) => KnownMTy (TScal t) where knownMTy = SMTScal knownScalTy
class KnownEnv env where knownEnv :: SList STy env
instance KnownEnv '[] where knownEnv = SNil
instance (KnownTy t, KnownEnv env) => KnownEnv (t : env) where knownEnv = SCons knownTy knownEnv
styKnown :: STy t -> Dict (KnownTy t)
styKnown STNil = Dict
styKnown (STPair a b) | Dict <- styKnown a, Dict <- styKnown b = Dict
styKnown (STEither a b) | Dict <- styKnown a, Dict <- styKnown b = Dict
styKnown (STLEither a b) | Dict <- styKnown a, Dict <- styKnown b = Dict
styKnown (STMaybe t) | Dict <- styKnown t = Dict
styKnown (STArr n t) | Dict <- snatKnown n, Dict <- styKnown t = Dict
styKnown (STScal t) | Dict <- sscaltyKnown t = Dict
styKnown (STAccum t) | Dict <- smtyKnown t = Dict
smtyKnown :: SMTy t -> Dict (KnownMTy t)
smtyKnown SMTNil = Dict
smtyKnown (SMTPair a b) | Dict <- smtyKnown a, Dict <- smtyKnown b = Dict
smtyKnown (SMTLEither a b) | Dict <- smtyKnown a, Dict <- smtyKnown b = Dict
smtyKnown (SMTMaybe t) | Dict <- smtyKnown t = Dict
smtyKnown (SMTArr n t) | Dict <- snatKnown n, Dict <- smtyKnown t = Dict
smtyKnown (SMTScal t) | Dict <- sscaltyKnown t = Dict
sscaltyKnown :: SScalTy t -> Dict (KnownScalTy t)
sscaltyKnown STI32 = Dict
sscaltyKnown STI64 = Dict
sscaltyKnown STF32 = Dict
sscaltyKnown STF64 = Dict
sscaltyKnown STBool = Dict
envKnown :: SList STy env -> Dict (KnownEnv env)
envKnown SNil = Dict
envKnown (t `SCons` env) | Dict <- styKnown t, Dict <- envKnown env = Dict
cheapExpr :: Expr x env t -> Bool
cheapExpr = \case
  EVar{} -> True
  ENil{} -> True
  EConst{} -> True
  EFst _ e -> cheapExpr e
  ESnd _ e -> cheapExpr e
  EUnit _ e -> cheapExpr e
  _ -> False
eTup :: SList (Ex env) list -> Ex env (Tup list)
eTup = mkTup (ENil ext) (EPair ext)
ebuildUp1 :: SNat n -> Ex env (Tup (Replicate n TIx)) -> Ex env TIx -> Ex (TIx : env) (TArr n t) -> Ex env (TArr (S n) t)
ebuildUp1 n sh size f =
  EBuild ext (SS n) (EPair ext sh size) $
    let arg = EVar ext (tTup (sreplicate (SS n) tIx)) IZ
    in EIdx ext (ELet ext (ESnd ext arg) (weakenExpr (WCopy WSink) f))
                (EFst ext arg)
eidxEq :: SNat n -> Ex env (Tup (Replicate n TIx)) -> Ex env (Tup (Replicate n TIx)) -> Ex env (TScal TBool)
eidxEq SZ _ _ = EConst ext STBool True
eidxEq (SS SZ) a b =
  EOp ext (OEq STI64) (EPair ext (ESnd ext a) (ESnd ext b))
eidxEq (SS n) a b
  | let ty = tTup (sreplicate (SS n) tIx)
  = ELet ext a $
    ELet ext (weakenExpr WSink b) $
      EOp ext OAnd $ EPair ext
        (EOp ext (OEq STI64) (EPair ext (ESnd ext (EVar ext ty (IS IZ)))
                                        (ESnd ext (EVar ext ty IZ))))
        (eidxEq n (EFst ext (EVar ext ty (IS IZ)))
                  (EFst ext (EVar ext ty IZ)))
emap :: (KnownTy a => Ex (a : env) b) -> Ex env (TArr n a) -> Ex env (TArr n b)
emap f arr
  | STArr _ t <- typeOf arr
  , Dict <- styKnown t
  = EMap ext f arr
ezipWith :: ((KnownTy a, KnownTy b) => Ex (b : a : env) c) -> Ex env (TArr n a) -> Ex env (TArr n b) -> Ex env (TArr n c)
ezipWith f arr1 arr2
  | STArr _ t1 <- typeOf arr1
  , STArr _ t2 <- typeOf arr2
  , Dict <- styKnown t1
  , Dict <- styKnown t2
  = EMap ext (subst (\_ t -> \case IZ -> ESnd ext (EVar ext (STPair t1 t2) IZ)
                                   IS IZ -> EFst ext (EVar ext (STPair t1 t2) IZ)
                                   IS (IS i) -> EVar ext t (IS i))
                    f)
             (EZip ext arr1 arr2)
ezip :: Ex env (TArr n a) -> Ex env (TArr n b) -> Ex env (TArr n (TPair a b))
ezip = EZip ext
eif :: Ex env (TScal TBool) -> Ex env a -> Ex env a -> Ex env a
eif a b c = ECase ext (EOp ext OIf a) (weakenExpr WSink b) (weakenExpr WSink c)
-- | Returns whether the shape is all-zero, but returns False for the zero-dimensional shape (because it is _not_ empty).
eshapeEmpty :: SNat n -> Ex env (Tup (Replicate n TIx)) -> Ex env (TScal TBool)
eshapeEmpty SZ _ = EConst ext STBool False
eshapeEmpty (SS SZ) e = EOp ext (OEq STI64) (EPair ext (ESnd ext e) (EConst ext STI64 0))
eshapeEmpty (SS n) e =
  ELet ext e $
    EOp ext OAnd (EPair ext
      (EOp ext (OEq STI64) (EPair ext (ESnd ext (EVar ext (tTup (sreplicate (SS n) tIx)) IZ))
                                      (EConst ext STI64 0)))
      (eshapeEmpty n (EFst ext (EVar ext (tTup (sreplicate (SS n) tIx)) IZ))))
eshapeConst :: Shape n -> Ex env (Tup (Replicate n TIx))
eshapeConst ShNil = ENil ext
eshapeConst (sh `ShCons` n) = EPair ext (eshapeConst sh) (EConst ext STI64 (fromIntegral @Int @Int64 n))
eshapeProd :: SNat n -> Ex env (Tup (Replicate n TIx)) -> Ex env TIx
eshapeProd SZ _ = EConst ext STI64 1
eshapeProd (SS SZ) e = ESnd ext e
eshapeProd (SS n) e =
  eunPair e $ \_ e1 e2 ->
    EOp ext (OMul STI64) (EPair ext (eshapeProd n e1) e2)
eflatten :: Ex env (TArr n t) -> Ex env (TArr N1 t)
eflatten e =
  let STArr n _ = typeOf e
  in elet e $
       EReshape ext (SS SZ) (EPair ext (ENil ext) (eshapeProd n (EShape ext (evar IZ)))) (evar IZ)
-- ezeroD2 :: STy t -> Ex env (ZeroInfo (D2 t)) -> Ex env (D2 t)
-- ezeroD2 t ezi = EZero ext (d2M t) ezi
-- eaccumD2 :: STy t -> SAcPrj p (D2 t) a -> Ex env (AcIdx p (D2 t)) -> Ex env a -> Ex env (TAccum (D2 t)) -> Ex env TNil
-- eaccumD2 t p ei ev ea | Refl <- lemZeroInfoD2 t = EAccum ext (d2M t) (ENil ext) p ei ev ea
-- eonehotD2 :: STy t -> SAcPrj p (D2 t) a -> Ex env (AcIdx p (D2 t)) -> Ex env a -> Ex env (D2 t)
-- eonehotD2 t p ei ev | Refl <- lemZeroInfoD2 t = EOneHot ext (d2M t) (ENil ext) p ei ev
eunPair :: Ex env (TPair a b) -> (forall env'. env :> env' -> Ex env' a -> Ex env' b -> Ex env' r) -> Ex env r
eunPair (EPair _ e1 e2) k = k WId e1 e2
eunPair e k | cheapExpr e = k WId (EFst ext e) (ESnd ext e)
eunPair e k =
  elet e $
    k WSink
      (EFst ext (evar IZ))
      (ESnd ext (evar IZ))
efst :: Ex env (TPair a b) -> Ex env a
efst (EPair _ e1 _) = e1
efst e = EFst ext e
esnd :: Ex env (TPair a b) -> Ex env b
esnd (EPair _ _ e2) = e2
esnd e = ESnd ext e
elet :: Ex env a -> (KnownTy a => Ex (a : env) b) -> Ex env b
elet rhs body
  | Dict <- styKnown (typeOf rhs)
  = if cheapExpr rhs
      then substInline rhs body
      else ELet ext rhs body
-- | Let-bind it but don't use the value (just ensure the expression's effects don't get lost)
use :: Ex env a -> Ex env b -> Ex env b
use a b = elet a $ weakenExpr WSink b
emaybe :: Ex env (TMaybe a) -> Ex env b -> (KnownTy a => Ex (a : env) b) -> Ex env b
emaybe e a b
  | STMaybe t <- typeOf e
  , Dict <- styKnown t
  = EMaybe ext a b e
ecase :: Ex env (TEither a b) -> ((KnownTy a, KnownTy b) => Ex (a : env) c) -> ((KnownTy a, KnownTy b) => Ex (b : env) c) -> Ex env c
ecase e a b
  | STEither t1 t2 <- typeOf e
  , Dict <- styKnown t1
  , Dict <- styKnown t2
  = ECase ext e a b
elcase :: Ex env (TLEither a b) -> ((KnownTy a, KnownTy b) => Ex env c) -> ((KnownTy a, KnownTy b) => Ex (a : env) c) -> ((KnownTy a, KnownTy b) => Ex (b : env) c) -> Ex env c
elcase e a b c
  | STLEither t1 t2 <- typeOf e
  , Dict <- styKnown t1
  , Dict <- styKnown t2
  = ELCase ext e a b c
evar :: KnownTy a => Idx env a -> Ex env a
evar = EVar ext knownTy
makeZeroInfo :: SMTy t -> Ex env t -> Ex env (ZeroInfo t)
makeZeroInfo = \ty reference -> ELet ext reference $ go ty (EVar ext (fromSMTy ty) IZ)
  where
    -- invariant: expression argument is duplicable
    go :: SMTy t -> Ex env t -> Ex env (ZeroInfo t)
    go SMTNil _ = ENil ext
    go (SMTPair t1 t2) e = EPair ext (go t1 (EFst ext e)) (go t2 (ESnd ext e))
    go SMTLEither{} _ = ENil ext
    go SMTMaybe{} _ = ENil ext
    go (SMTArr _ t) e = emap (go t (EVar ext (fromSMTy t) IZ)) e
    go SMTScal{} _ = ENil ext
splitSparsePair
  :: -- given a sparsity
     STy (TPair a b) -> Sparse (TPair a b) t'
  -> (forall a' b'.
          -- I give you back two sparsities for a and b
          Sparse a a' -> Sparse b b'
          -- furthermore, I tell you that either your t' is already this (a', b') pair...
       -> Either
            (t' :~: TPair a' b')
            -- or I tell you how to construct a' and b' from t', given an actual t'
            (forall r' env.
                 Idx env t'
              -> (forall env'.
                     (forall c. Ex env' c -> Ex env c)
                  -> Ex env' a' -> Ex env' b' -> r')
              -> r')
       -> r)
  -> r
splitSparsePair _ SpAbsent k =
  k SpAbsent SpAbsent $ Right $ \_ k2 ->
  k2 id (ENil ext) (ENil ext)
splitSparsePair _ (SpPair s1 s2) k1 =
  k1 s1 s2 $ Left Refl
splitSparsePair t@(STPair t1 t2) (SpSparse s@(SpPair s1 s2)) k =
  let t' = STPair (STMaybe (applySparse s1 t1)) (STMaybe (applySparse s2 t2)) in
  k (SpSparse s1) (SpSparse s2) $ Right $ \i k2 ->
  k2 (elet $
       emaybe (EVar ext (STMaybe (applySparse s t)) i)
         (EPair ext (ENothing ext (applySparse s1 t1)) (ENothing ext (applySparse s2 t2)))
         (EPair ext (EJust ext (EFst ext (evar IZ))) (EJust ext (ESnd ext (evar IZ)))))
     (EFst ext (EVar ext t' IZ)) (ESnd ext (EVar ext t' IZ))
splitSparsePair _ (SpSparse SpAbsent) k =
  k SpAbsent SpAbsent $ Right $ \_ k2 ->
  k2 id (ENil ext) (ENil ext)
-- -- TODO: having to handle sparse-of-sparse at all is ridiculous
splitSparsePair t (SpSparse (SpSparse s)) k =
  splitSparsePair t (SpSparse s) $ \s1 s2 eres ->
  k s1 s2 $ Right $ \i k2 ->
  case eres of
    Left refl -> case refl of {}
    Right f ->
      f IZ $ \wrap e1 e2 ->
        k2 (\body ->
              elet (emaybe (EVar ext (STMaybe (STMaybe (applySparse s t))) i)
                     (ENothing ext (applySparse s t))
                     (evar IZ)) $
                wrap body)
           e1 e2
  |