1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ImplicitParams #-}
{-# LANGUAGE OverloadedLabels #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
-- I want to bring various type variables in scope using type annotations in
-- patterns, but I don't want to have to mention all the other type parameters
-- of the types in question as well then. Partial type signatures (with '_') are
-- useful here.
{-# LANGUAGE PartialTypeSignatures #-}
{-# OPTIONS -Wno-partial-type-signatures #-}
module CHAD (
drev,
freezeRet,
CHADConfig(..),
defaultConfig,
Storage(..),
Descr(..),
Select,
) where
import Data.Functor.Const
import Data.Type.Bool (If)
import Data.Type.Equality (type (==))
import GHC.Stack (HasCallStack)
import AST
import AST.Bindings
import AST.Count
import AST.Env
import AST.Weaken.Auto
import CHAD.Accum
import CHAD.EnvDescr
import CHAD.Types
import Data
import Lemmas
------------------------------ TAPES AND BINDINGS ------------------------------
type family Tape binds where
Tape '[] = TNil
Tape (t : ts) = TPair t (Tape ts)
tapeTy :: SList STy binds -> STy (Tape binds)
tapeTy SNil = STNil
tapeTy (SCons t ts) = STPair t (tapeTy ts)
bindingsCollect :: Bindings f env binds -> Subenv binds tapebinds
-> Append binds env :> env2 -> Ex env2 (Tape tapebinds)
bindingsCollect BTop SETop _ = ENil ext
bindingsCollect (BPush binds (t, _)) (SEYes sub) w =
EPair ext (EVar ext t (w @> IZ))
(bindingsCollect binds sub (w .> WSink))
bindingsCollect (BPush binds _) (SENo sub) w =
bindingsCollect binds sub (w .> WSink)
-- In order from large to small: i.e. in reverse order from what we want,
-- because in a Bindings, the head of the list is the bottom-most entry.
type family TapeUnfoldings binds where
TapeUnfoldings '[] = '[]
TapeUnfoldings (t : ts) = Tape ts : TapeUnfoldings ts
type family Reverse l where
Reverse '[] = '[]
Reverse (t : ts) = Append (Reverse ts) '[t]
-- An expression that is always 'snd'
data UnfExpr env t where
UnfExSnd :: STy s -> STy t -> UnfExpr (TPair s t : env) t
fromUnfExpr :: UnfExpr env t -> Ex env t
fromUnfExpr (UnfExSnd s t) = ESnd ext (EVar ext (STPair s t) IZ)
-- - A bunch of 'snd' expressions taking us from knowing that there's a
-- 'Tape ts' in the environment (for simplicity assume it's at IZ, we'll fix
-- this in reconstructBindings), to having 'Reverse (TapeUnfoldings ts)' in
-- the environment.
-- - In the extended environment, another bunch of let bindings (these are
-- 'fst' expressions, but no need to know that statically) that project the
-- fsts out of what we introduced above, one for each type in 'ts'.
data Reconstructor env ts =
Reconstructor
(Bindings UnfExpr (Tape ts : env) (Reverse (TapeUnfoldings ts)))
(Bindings Ex (Append (Reverse (TapeUnfoldings ts)) (Tape ts : env)) ts)
ssnoc :: SList f ts -> f t -> SList f (Append ts '[t])
ssnoc SNil a = SCons a SNil
ssnoc (SCons t ts) a = SCons t (ssnoc ts a)
sreverse :: SList f ts -> SList f (Reverse ts)
sreverse SNil = SNil
sreverse (SCons t ts) = ssnoc (sreverse ts) t
stapeUnfoldings :: SList STy ts -> SList STy (TapeUnfoldings ts)
stapeUnfoldings SNil = SNil
stapeUnfoldings (SCons _ ts) = SCons (tapeTy ts) (stapeUnfoldings ts)
-- Puts a 'snd' at the top of an unfolder stack and grows the context variable by one.
shiftUnfolder
:: STy t
-> SList STy ts
-> Bindings UnfExpr (Tape ts : env) list
-> Bindings UnfExpr (Tape (t : ts) : env) (Append list '[Tape ts])
shiftUnfolder newTy ts BTop = BPush BTop (tapeTy ts, UnfExSnd newTy (tapeTy ts))
shiftUnfolder newTy ts (BPush b (t, UnfExSnd itemTy _)) =
-- Recurse on 'b', and retype the 'snd'. We need to unfold 'b' once in order
-- to expand an 'Append' in the types so that things simplify just enough.
-- We have an equality 'Append binds x1 ~ a : x2', where 'binds' is the list
-- of bindings produced by 'b'. We want to conclude from this that
-- 'binds ~ a : x3' for some 'x3', but GHC will only do that once we know
-- that 'binds ~ y : ys' so that the 'Append' can expand one step, after
-- which 'y ~ a' as desired. The 'case' unfolds 'b' one step.
BPush (shiftUnfolder newTy ts b) (t, case b of BTop -> UnfExSnd itemTy t
BPush{} -> UnfExSnd itemTy t)
growRecon :: forall env t ts. STy t -> SList STy ts -> Reconstructor env ts -> Reconstructor env (t : ts)
growRecon t ts (Reconstructor unfbs bs)
| Refl <- lemAppendNil @(Append (Reverse (TapeUnfoldings ts)) '[Tape ts])
, Refl <- lemAppendAssoc @ts @(Append (Reverse (TapeUnfoldings ts)) '[Tape ts]) @(Tape (t : ts) : env)
, Refl <- lemAppendAssoc @(Reverse (TapeUnfoldings ts)) @'[Tape ts] @env
= Reconstructor
(shiftUnfolder t ts unfbs)
-- Add a 'fst' at the bottom of the builder stack.
-- First we have to weaken most of 'bs' to skip one more binding in the
-- unfolder stack above it.
(BPush (fst (weakenBindings weakenExpr
(wCopies (sappend (sreverse (stapeUnfoldings ts)) (SCons (tapeTy ts) SNil))
(WSink :: env :> (Tape (t : ts) : env))) bs))
(t
,EFst ext $ EVar ext (tapeTy (SCons t ts)) $
wSinks @(Tape (t : ts) : env)
(sappend ts
(sappend (sappend (sreverse (stapeUnfoldings ts))
(SCons (tapeTy ts) SNil))
SNil))
@> IZ))
buildReconstructor :: SList STy ts -> Reconstructor env ts
buildReconstructor SNil = Reconstructor BTop BTop
buildReconstructor (SCons t ts) = growRecon t ts (buildReconstructor ts)
-- STRATEGY FOR reconstructBindings
--
-- binds = []
-- e : ()
--
-- binds = [c]
-- e : (c, ())
-- x0 = snd x1 : ()
-- y1 = fst e : c
--
-- binds = [b, c]
-- e : (b, (c, ()))
-- x1 = snd e : (c, ())
-- x0 = snd x1 : ()
-- y1 = fst x1 : c
-- y2 = fst x2 : b
--
-- binds = [a, b, c]
-- e : (a, (b, (c, ())))
-- x2 = snd e : (b, (c, ()))
-- x1 = snd x2 : (c, ())
-- x0 = snd x1 : ()
-- y1 = fst x1 : c
-- y2 = fst x2 : b
-- y3 = fst x3 : a
-- Given that in 'env' we can find a 'Tape binds', i.e. a tuple containing all
-- the things in the list 'binds', we want to create a let stack that extracts
-- all values from that tuple and in effect "restores" the environment
-- described by 'binds'. The idea is that elsewhere, we took a slice of the
-- environment and saved it all in a tuple to be restored later. We
-- incidentally also add a bunch of additional bindings, namely 'Reverse
-- (TapeUnfoldings binds)', so the calling code just has to skip those in
-- whatever it wants to do.
reconstructBindings :: SList STy binds -> Idx env (Tape binds)
-> (Bindings Ex env (Append binds (Reverse (TapeUnfoldings binds)))
,SList STy (Reverse (TapeUnfoldings binds)))
reconstructBindings binds tape =
let Reconstructor unf build = buildReconstructor binds
in (fst $ weakenBindings weakenExpr (WIdx tape)
(bconcat (mapBindings fromUnfExpr unf) build)
,sreverse (stapeUnfoldings binds))
---------------------------------- DERIVATIVES ---------------------------------
d1op :: SOp a t -> Ex env (D1 a) -> Ex env (D1 t)
d1op (OAdd t) e = EOp ext (OAdd t) e
d1op (OMul t) e = EOp ext (OMul t) e
d1op (ONeg t) e = EOp ext (ONeg t) e
d1op (OLt t) e = EOp ext (OLt t) e
d1op (OLe t) e = EOp ext (OLe t) e
d1op (OEq t) e = EOp ext (OEq t) e
d1op ONot e = EOp ext ONot e
d1op OAnd e = EOp ext OAnd e
d1op OOr e = EOp ext OOr e
d1op OIf e = EOp ext OIf e
d1op ORound64 e = EOp ext ORound64 e
d1op OToFl64 e = EOp ext OToFl64 e
d1op (ORecip t) e = EOp ext (ORecip t) e
d1op (OExp t) e = EOp ext (OExp t) e
d1op (OLog t) e = EOp ext (OLog t) e
d1op (OIDiv t) e = EOp ext (OIDiv t) e
-- | Both primal and dual must be duplicable expressions
data D2Op a t = Linear (forall env. Ex env (D2 t) -> Ex env (D2 a))
| Nonlinear (forall env. Ex env (D1 a) -> Ex env (D2 t) -> Ex env (D2 a))
d2op :: SOp a t -> D2Op a t
d2op op = case op of
OAdd t -> d2opBinArrangeInt t $ Linear $ \d -> EJust ext (EPair ext d d)
OMul t -> d2opBinArrangeInt t $ Nonlinear $ \e d ->
EJust ext (EPair ext (EOp ext (OMul t) (EPair ext (ESnd ext e) d))
(EOp ext (OMul t) (EPair ext (EFst ext e) d)))
ONeg t -> d2opUnArrangeInt t $ Linear $ \d -> EOp ext (ONeg t) d
OLt t -> Linear $ \_ -> ENothing ext (STPair (d2 (STScal t)) (d2 (STScal t)))
OLe t -> Linear $ \_ -> ENothing ext (STPair (d2 (STScal t)) (d2 (STScal t)))
OEq t -> Linear $ \_ -> ENothing ext (STPair (d2 (STScal t)) (d2 (STScal t)))
ONot -> Linear $ \_ -> ENil ext
OAnd -> Linear $ \_ -> ENothing ext (STPair STNil STNil)
OOr -> Linear $ \_ -> ENothing ext (STPair STNil STNil)
OIf -> Linear $ \_ -> ENil ext
ORound64 -> Linear $ \_ -> EConst ext STF64 0.0
OToFl64 -> Linear $ \_ -> ENil ext
ORecip t -> floatingD2 t $ Nonlinear $ \e d -> EOp ext (OMul t) (EPair ext (EOp ext (ONeg t) (EOp ext (ORecip t) (EOp ext (OMul t) (EPair ext e e)))) d)
OExp t -> floatingD2 t $ Nonlinear $ \e d -> EOp ext (OMul t) (EPair ext (EOp ext (OExp t) e) d)
OLog t -> floatingD2 t $ Nonlinear $ \e d -> EOp ext (OMul t) (EPair ext (EOp ext (ORecip t) e) d)
OIDiv t -> integralD2 t $ Linear $ \_ -> ENothing ext (STPair STNil STNil)
where
d2opUnArrangeInt :: SScalTy a
-> (D2s a ~ TScal a => D2Op (TScal a) t)
-> D2Op (TScal a) t
d2opUnArrangeInt ty float = case ty of
STI32 -> Linear $ \_ -> ENil ext
STI64 -> Linear $ \_ -> ENil ext
STF32 -> float
STF64 -> float
STBool -> Linear $ \_ -> ENil ext
d2opBinArrangeInt :: SScalTy a
-> (D2s a ~ TScal a => D2Op (TPair (TScal a) (TScal a)) t)
-> D2Op (TPair (TScal a) (TScal a)) t
d2opBinArrangeInt ty float = case ty of
STI32 -> Linear $ \_ -> ENothing ext (STPair STNil STNil)
STI64 -> Linear $ \_ -> ENothing ext (STPair STNil STNil)
STF32 -> float
STF64 -> float
STBool -> Linear $ \_ -> ENothing ext (STPair STNil STNil)
floatingD2 :: ScalIsFloating a ~ True
=> SScalTy a -> ((D2s a ~ TScal a, ScalIsNumeric a ~ True) => r) -> r
floatingD2 STF32 k = k
floatingD2 STF64 k = k
integralD2 :: ScalIsIntegral a ~ True
=> SScalTy a -> ((D2s a ~ TNil, ScalIsNumeric a ~ True) => r) -> r
integralD2 STI32 k = k
integralD2 STI64 k = k
desD1E :: Descr env sto -> SList STy (D1E env)
desD1E = d1e . descrList
-- d1W :: env :> env' -> D1E env :> D1E env'
-- d1W WId = WId
-- d1W WSink = WSink
-- d1W (WCopy w) = WCopy (d1W w)
-- d1W (WPop w) = WPop (d1W w)
-- d1W (WThen u w) = WThen (d1W u) (d1W w)
conv1Idx :: Idx env t -> Idx (D1E env) (D1 t)
conv1Idx IZ = IZ
conv1Idx (IS i) = IS (conv1Idx i)
data Idx2 env sto t
= Idx2Ac (Idx (D2AcE (Select env sto "accum")) (TAccum (D2 t)))
| Idx2Me (Idx (Select env sto "merge") t)
| Idx2Di (Idx (Select env sto "discr") t)
conv2Idx :: Descr env sto -> Idx env t -> Idx2 env sto t
conv2Idx (DPush _ (_, SAccum)) IZ = Idx2Ac IZ
conv2Idx (DPush _ (_, SMerge)) IZ = Idx2Me IZ
conv2Idx (DPush _ (_, SDiscr)) IZ = Idx2Di IZ
conv2Idx (DPush des (_, SAccum)) (IS i) =
case conv2Idx des i of Idx2Ac j -> Idx2Ac (IS j)
Idx2Me j -> Idx2Me j
Idx2Di j -> Idx2Di j
conv2Idx (DPush des (_, SMerge)) (IS i) =
case conv2Idx des i of Idx2Ac j -> Idx2Ac j
Idx2Me j -> Idx2Me (IS j)
Idx2Di j -> Idx2Di j
conv2Idx (DPush des (_, SDiscr)) (IS i) =
case conv2Idx des i of Idx2Ac j -> Idx2Ac j
Idx2Me j -> Idx2Me j
Idx2Di j -> Idx2Di (IS j)
conv2Idx DTop i = case i of {}
------------------------------------ MONOIDS -----------------------------------
zeroTup :: SList STy env0 -> Ex env (Tup (D2E env0))
zeroTup SNil = ENil ext
zeroTup (SCons t env) = EPair ext (zeroTup env) (EZero ext t)
------------------------------------ SUBENVS -----------------------------------
subenvPlus :: SList STy env
-> Subenv env env1 -> Subenv env env2
-> (forall env3. Subenv env env3
-> Subenv env3 env1
-> Subenv env3 env2
-> (Ex exenv (Tup (D2E env1))
-> Ex exenv (Tup (D2E env2))
-> Ex exenv (Tup (D2E env3)))
-> r)
-> r
subenvPlus SNil SETop SETop k = k SETop SETop SETop (\_ _ -> ENil ext)
subenvPlus (SCons _ env) (SENo sub1) (SENo sub2) k =
subenvPlus env sub1 sub2 $ \sub3 s31 s32 pl ->
k (SENo sub3) s31 s32 pl
subenvPlus (SCons _ env) (SEYes sub1) (SENo sub2) k =
subenvPlus env sub1 sub2 $ \sub3 s31 s32 pl ->
k (SEYes sub3) (SEYes s31) (SENo s32) $ \e1 e2 ->
ELet ext e1 $
EPair ext (pl (EFst ext (EVar ext (typeOf e1) IZ))
(weakenExpr WSink e2))
(ESnd ext (EVar ext (typeOf e1) IZ))
subenvPlus (SCons _ env) (SENo sub1) (SEYes sub2) k =
subenvPlus env sub1 sub2 $ \sub3 s31 s32 pl ->
k (SEYes sub3) (SENo s31) (SEYes s32) $ \e1 e2 ->
ELet ext e2 $
EPair ext (pl (weakenExpr WSink e1)
(EFst ext (EVar ext (typeOf e2) IZ)))
(ESnd ext (EVar ext (typeOf e2) IZ))
subenvPlus (SCons t env) (SEYes sub1) (SEYes sub2) k =
subenvPlus env sub1 sub2 $ \sub3 s31 s32 pl ->
k (SEYes sub3) (SEYes s31) (SEYes s32) $ \e1 e2 ->
ELet ext e1 $
ELet ext (weakenExpr WSink e2) $
EPair ext (pl (EFst ext (EVar ext (typeOf e1) (IS IZ)))
(EFst ext (EVar ext (typeOf e2) IZ)))
(EPlus ext t
(ESnd ext (EVar ext (typeOf e1) (IS IZ)))
(ESnd ext (EVar ext (typeOf e2) IZ)))
expandSubenvZeros :: SList STy env0 -> Subenv env0 env0Merge -> Ex env (Tup (D2E env0Merge)) -> Ex env (Tup (D2E env0))
expandSubenvZeros _ SETop _ = ENil ext
expandSubenvZeros (SCons t ts) (SEYes sub) e =
ELet ext e $
let var = EVar ext (STPair (tTup (d2e (subList ts sub))) (d2 t)) IZ
in EPair ext (expandSubenvZeros ts sub (EFst ext var)) (ESnd ext var)
expandSubenvZeros (SCons t ts) (SENo sub) e = EPair ext (expandSubenvZeros ts sub e) (EZero ext t)
assertSubenvEmpty :: HasCallStack => Subenv env env' -> env' :~: '[]
assertSubenvEmpty (SENo sub) | Refl <- assertSubenvEmpty sub = Refl
assertSubenvEmpty SETop = Refl
assertSubenvEmpty SEYes{} = error "assertSubenvEmpty: not empty"
--------------------------------- ACCUMULATORS ---------------------------------
accumPromote :: forall dt env sto proxy r.
proxy dt
-> Descr env sto
-> (forall stoRepl envPro.
(Select env stoRepl "merge" ~ '[])
=> Descr env stoRepl
-- ^ A revised environment description that switches
-- arrays (used in the OccEnv) that are currently on
-- "merge" storage, to "accum" storage. Any other "merge"
-- entries are deleted.
-> SList STy envPro
-- ^ New entries on top of the original dual environment,
-- that house the accumulators for the promoted arrays in
-- the original environment.
-> Subenv (Select env sto "merge") envPro
-- ^ The promoted entries were merge entries in the
-- original environment.
-> (forall shbinds.
SList STy shbinds
-> (D2 dt : Append shbinds (D2AcE (Select env stoRepl "accum")))
:> Append (D2AcE envPro) (D2 dt : Append shbinds (D2AcE (Select env sto "accum"))))
-- ^ A weakening that converts a computation in the
-- revised environment to one in the original environment
-- extended with some accumulators.
-> r)
-> r
accumPromote _ DTop k = k DTop SNil SETop (\_ -> WId)
accumPromote pdty (descr `DPush` (t :: STy t, sto)) k =
accumPromote pdty descr $ \(storepl :: Descr env1 stoRepl) (envpro :: SList _ envPro) prosub wf ->
case sto of
-- Accumulators are left as-is
SAccum ->
k (storepl `DPush` (t, SAccum))
envpro
prosub
(\shbinds ->
autoWeak (#pro (d2ace envpro) &. #d (auto1 @(D2 dt)) &. #shb shbinds &. #acc (auto1 @(TAccum (D2 t))) &. #tl (d2ace (select SAccum descr)))
(#acc :++: (#pro :++: #d :++: #shb :++: #tl))
(#pro :++: #d :++: #shb :++: #acc :++: #tl)
.> WCopy (wf shbinds)
.> autoWeak (#d (auto1 @(D2 dt)) &. #shb shbinds &. #acc (auto1 @(TAccum (D2 t))) &. #tl (d2ace (select SAccum storepl)))
(#d :++: #shb :++: #acc :++: #tl)
(#acc :++: (#d :++: #shb :++: #tl)))
SMerge -> case t of
-- Discrete values are left as-is
_ | isDiscrete t ->
k (storepl `DPush` (t, SDiscr))
envpro
(SENo prosub)
wf
-- Values with "merge" storage are promoted to an accumulator in envPro
_ ->
k (storepl `DPush` (t, SAccum))
(t `SCons` envpro)
(SEYes prosub)
(\(shbinds :: SList _ shbinds) ->
let shbindsC = slistMap (\_ -> Const ()) shbinds
in
-- wf:
-- D2 t : Append shbinds (D2AcE (Select envPro stoRepl "accum")) :> Append envPro (D2 t : Append shbinds (D2AcE (Select envPro sto1 "accum")))
-- WCopy wf:
-- TAccum n t3 : D2 t : Append shbinds (D2AcE (Select envPro stoRepl "accum")) :> TAccum n t3 : Append envPro (D2 t : Append shbinds (D2AcE (Select envPro sto1 "accum")))
-- WPICK: ^ THESE TWO ||
-- goal: | ARE EQUAL ||
-- D2 t : Append shbinds (TAccum n t3 : D2AcE (Select envPro stoRepl "accum")) :> TAccum n t3 : Append envPro (D2 t : Append shbinds (D2AcE (Select envPro sto1 "accum")))
WCopy (wf shbinds)
.> WPick @(TAccum (D2 t)) @(D2 dt : shbinds) (Const () `SCons` shbindsC)
(WId @(D2AcE (Select env1 stoRepl "accum"))))
-- Discrete values are left as-is, nothing to do
SDiscr ->
k (storepl `DPush` (t, SDiscr))
envpro
prosub
wf
where
isDiscrete :: STy t' -> Bool
isDiscrete = \case
STNil -> True
STPair a b -> isDiscrete a && isDiscrete b
STEither a b -> isDiscrete a && isDiscrete b
STMaybe a -> isDiscrete a
STArr _ a -> isDiscrete a
STScal st -> case st of
STI32 -> True
STI64 -> True
STF32 -> False
STF64 -> False
STBool -> True
STAccum{} -> False
---------------------------- RETURN TRIPLE FROM CHAD ---------------------------
data Ret env0 sto t =
forall shbinds tapebinds env0Merge.
Ret (Bindings Ex (D1E env0) shbinds) -- shared binds
(Subenv shbinds tapebinds)
(Ex (Append shbinds (D1E env0)) (D1 t))
(Subenv (Select env0 sto "merge") env0Merge)
(Ex (D2 t : Append tapebinds (D2AcE (Select env0 sto "accum"))) (Tup (D2E env0Merge)))
deriving instance Show (Ret env0 sto t)
data RetPair env0 sto env shbinds tapebinds t =
forall env0Merge.
RetPair (Ex (Append shbinds env) (D1 t))
(Subenv (Select env0 sto "merge") env0Merge)
(Ex (D2 t : Append tapebinds (D2AcE (Select env0 sto "accum"))) (Tup (D2E env0Merge)))
deriving instance Show (RetPair env0 sto env shbinds tapebinds t)
data Rets env0 sto env list =
forall shbinds tapebinds.
Rets (Bindings Ex env shbinds)
(Subenv shbinds tapebinds)
(SList (RetPair env0 sto env shbinds tapebinds) list)
deriving instance Show (Rets env0 sto env list)
weakenRetPair :: SList STy shbinds -> env :> env'
-> RetPair env0 sto env shbinds tapebinds t -> RetPair env0 sto env' shbinds tapebinds t
weakenRetPair bindslist w (RetPair e1 sub e2) = RetPair (weakenExpr (weakenOver bindslist w) e1) sub e2
weakenRets :: env :> env' -> Rets env0 sto env list -> Rets env0 sto env' list
weakenRets w (Rets binds tapesub list) =
let (binds', _) = weakenBindings weakenExpr w binds
in Rets binds' tapesub (slistMap (weakenRetPair (bindingsBinds binds) w) list)
rebaseRetPair :: forall env b1 b2 tapebinds1 tapebinds2 env0 sto t f.
Descr env0 sto
-> SList f b1 -> SList f b2
-> Subenv b1 tapebinds1 -> Subenv b2 tapebinds2
-> RetPair env0 sto (Append b1 env) b2 tapebinds2 t
-> RetPair env0 sto env (Append b2 b1) (Append tapebinds2 tapebinds1) t
rebaseRetPair descr b1 b2 subtape1 subtape2 (RetPair p sub d)
| Refl <- lemAppendAssoc @b2 @b1 @env =
RetPair p sub (weakenExpr (autoWeak
(#d (auto1 @(D2 t))
&. #t2 (subList b2 subtape2)
&. #t1 (subList b1 subtape1)
&. #tl (d2ace (select SAccum descr)))
(#d :++: (#t2 :++: #tl))
(#d :++: ((#t2 :++: #t1) :++: #tl)))
d)
retConcat :: forall env0 sto list. Descr env0 sto -> SList (Ret env0 sto) list -> Rets env0 sto (D1E env0) list
retConcat _ SNil = Rets BTop SETop SNil
retConcat descr (SCons (Ret (b :: Bindings _ _ shbinds1) (subtape :: Subenv _ tapebinds1) p sub d) list)
| Rets (binds :: Bindings _ _ shbinds2) (subtape2 :: Subenv _ tapebinds2) pairs
<- weakenRets (sinkWithBindings b) (retConcat descr list)
, Refl <- lemAppendAssoc @shbinds2 @shbinds1 @(D1E env0)
, Refl <- lemAppendAssoc @tapebinds2 @tapebinds1 @(D2AcE (Select env0 sto "accum"))
= Rets (bconcat b binds)
(subenvConcat subtape subtape2)
(SCons (RetPair (weakenExpr (sinkWithBindings binds) p)
sub
(weakenExpr (WCopy (sinkWithSubenv subtape2)) d))
(slistMap (rebaseRetPair descr (bindingsBinds b) (bindingsBinds binds)
subtape subtape2)
pairs))
freezeRet :: Descr env sto
-> Ret env sto t
-> Ex (D2 t : Append (D2AcE (Select env sto "accum")) (D1E env)) (TPair (D1 t) (Tup (D2E (Select env sto "merge"))))
freezeRet descr (Ret e0 subtape e1 sub e2 :: Ret _ _ t) =
let (e0', wInsertD2Ac) = weakenBindings weakenExpr (WSink .> wSinks (d2ace (select SAccum descr))) e0
e2' = weakenExpr (WCopy (wCopies (subList (bindingsBinds e0) subtape) (wRaiseAbove (d2ace (select SAccum descr)) (desD1E descr)))) e2
in letBinds e0' $
EPair ext
(weakenExpr wInsertD2Ac e1)
(ELet ext (weakenExpr (autoWeak (#d (auto1 @(D2 t))
&. #tape (subList (bindingsBinds e0) subtape)
&. #shbinds (bindingsBinds e0)
&. #d2ace (d2ace (select SAccum descr))
&. #tl (desD1E descr))
(#d :++: LPreW #tape #shbinds (wUndoSubenv subtape) :++: #d2ace :++: #tl)
(#shbinds :++: #d :++: #d2ace :++: #tl))
e2') $
expandSubenvZeros (select SMerge descr) sub (EVar ext (tTup (d2e (subList (select SMerge descr) sub))) IZ))
---------------------------- THE CHAD TRANSFORMATION ---------------------------
drev :: forall env sto t.
(?config :: CHADConfig)
=> Descr env sto
-> Ex env t -> Ret env sto t
drev des = \case
EVar _ t i ->
case conv2Idx des i of
Idx2Ac accI ->
Ret BTop
SETop
(EVar ext (d1 t) (conv1Idx i))
(subenvNone (select SMerge des))
(EAccum ext SZ (ENil ext) (EVar ext (d2 t) IZ) (EVar ext (STAccum (d2 t)) (IS accI)))
Idx2Me tupI ->
Ret BTop
SETop
(EVar ext (d1 t) (conv1Idx i))
(subenvOnehot (select SMerge des) tupI)
(EPair ext (ENil ext) (EVar ext (d2 t) IZ))
Idx2Di _ ->
Ret BTop
SETop
(EVar ext (d1 t) (conv1Idx i))
(subenvNone (select SMerge des))
(ENil ext)
ELet _ (rhs :: Ex _ a) body
| Ret (rhs0 :: Bindings _ _ rhs_shbinds) (subtapeRHS :: Subenv _ rhs_tapebinds) (rhs1 :: Ex _ d1_a) subRHS rhs2 <- drev des rhs
, ChosenStorage storage <- if chcLetArrayAccum ?config && hasArrays (typeOf rhs) then ChosenStorage SAccum else ChosenStorage SMerge
, RetScoped (body0 :: Bindings _ _ body_shbinds) (subtapeBody :: Subenv _ body_tapebinds) body1 subBody body2 <- drevScoped des (typeOf rhs) storage body
, let (body0', wbody0') = weakenBindings weakenExpr (WCopy (sinkWithBindings rhs0)) body0
, Refl <- lemAppendAssoc @body_shbinds @(d1_a : rhs_shbinds) @(D1E env)
, Refl <- lemAppendAssoc @body_tapebinds @rhs_tapebinds @(D2AcE (Select env sto "accum")) ->
subenvPlus (select SMerge des) subRHS subBody $ \subBoth _ _ plus_RHS_Body ->
let bodyResType = STPair (tTup (d2e (subList (select SMerge des) subBody))) (d2 (typeOf rhs)) in
Ret (bconcat (rhs0 `BPush` (d1 (typeOf rhs), rhs1)) body0')
(subenvConcat (SENo @d1_a subtapeRHS) subtapeBody)
(weakenExpr wbody0' body1)
subBoth
(ELet ext (weakenExpr (autoWeak (#d (auto1 @(D2 t))
&. #body (subList (bindingsBinds body0) subtapeBody)
&. #rhs (subList (bindingsBinds rhs0) subtapeRHS)
&. #tl (d2ace (select SAccum des)))
(#d :++: #body :++: #tl)
(#d :++: (#body :++: #rhs) :++: #tl))
body2) $
ELet ext
(ELet ext (ESnd ext (EVar ext bodyResType IZ)) $
weakenExpr (WCopy (wSinks' @[_,_] .> sinkWithSubenv subtapeBody)) rhs2) $
plus_RHS_Body
(EVar ext (tTup (d2e (subList (select SMerge des) subRHS))) IZ)
(EFst ext (EVar ext bodyResType (IS IZ))))
EPair _ a b
| Rets binds subtape (RetPair a1 subA a2 `SCons` RetPair b1 subB b2 `SCons` SNil)
<- retConcat des $ drev des a `SCons` drev des b `SCons` SNil
, let dt = STPair (d2 (typeOf a)) (d2 (typeOf b)) ->
subenvPlus (select SMerge des) subA subB $ \subBoth _ _ plus_A_B ->
Ret binds
subtape
(EPair ext a1 b1)
subBoth
(EMaybe ext
(zeroTup (subList (select SMerge des) subBoth))
(ELet ext (ELet ext (EFst ext (EVar ext dt IZ))
(weakenExpr (WCopy (wSinks' @[_,_])) a2)) $
ELet ext (ELet ext (ESnd ext (EVar ext dt (IS IZ)))
(weakenExpr (WCopy (wSinks' @[_,_,_])) b2)) $
plus_A_B
(EVar ext (tTup (d2e (subList (select SMerge des) subA))) (IS IZ))
(EVar ext (tTup (d2e (subList (select SMerge des) subB))) IZ))
(EVar ext (STMaybe (STPair (d2 (typeOf a)) (d2 (typeOf b)))) IZ))
EFst _ e
| Ret e0 subtape e1 sub e2 <- drev des e
, STPair t1 t2 <- typeOf e ->
Ret e0
subtape
(EFst ext e1)
sub
(ELet ext (EJust ext (EPair ext (EVar ext (d2 t1) IZ) (EZero ext t2))) $
weakenExpr (WCopy WSink) e2)
ESnd _ e
| Ret e0 subtape e1 sub e2 <- drev des e
, STPair t1 t2 <- typeOf e ->
Ret e0
subtape
(ESnd ext e1)
sub
(ELet ext (EJust ext (EPair ext (EZero ext t1) (EVar ext (d2 t2) IZ))) $
weakenExpr (WCopy WSink) e2)
ENil _ -> Ret BTop SETop (ENil ext) (subenvNone (select SMerge des)) (ENil ext)
EInl _ t2 e
| Ret e0 subtape e1 sub e2 <- drev des e ->
Ret e0
subtape
(EInl ext (d1 t2) e1)
sub
(EMaybe ext
(zeroTup (subList (select SMerge des) sub))
(ECase ext (EVar ext (STEither (d2 (typeOf e)) (d2 t2)) IZ)
(weakenExpr (WCopy (wSinks' @[_,_])) e2)
(EError ext (tTup (d2e (subList (select SMerge des) sub))) "inl<-dinr"))
(EVar ext (STMaybe (STEither (d2 (typeOf e)) (d2 t2))) IZ))
EInr _ t1 e
| Ret e0 subtape e1 sub e2 <- drev des e ->
Ret e0
subtape
(EInr ext (d1 t1) e1)
sub
(EMaybe ext
(zeroTup (subList (select SMerge des) sub))
(ECase ext (EVar ext (STEither (d2 t1) (d2 (typeOf e))) IZ)
(EError ext (tTup (d2e (subList (select SMerge des) sub))) "inr<-dinl")
(weakenExpr (WCopy (wSinks' @[_,_])) e2))
(EVar ext (STMaybe (STEither (d2 t1) (d2 (typeOf e)))) IZ))
ECase _ e (a :: Ex _ t) b
| STEither t1 t2 <- typeOf e
, Ret (e0 :: Bindings _ _ e_binds) (subtapeE :: Subenv _ e_tape) e1 subE e2 <- drev des e
, ChosenStorage storage1 <- if chcCaseArrayAccum ?config && hasArrays t1 then ChosenStorage SAccum else ChosenStorage SMerge
, ChosenStorage storage2 <- if chcCaseArrayAccum ?config && hasArrays t2 then ChosenStorage SAccum else ChosenStorage SMerge
, RetScoped (a0 :: Bindings _ _ rhs_a_binds) (subtapeA :: Subenv _ rhs_a_tape) a1 subA a2 <- drevScoped des t1 storage1 a
, RetScoped (b0 :: Bindings _ _ rhs_b_binds) (subtapeB :: Subenv _ rhs_b_tape) b1 subB b2 <- drevScoped des t2 storage2 b
, Refl <- lemAppendAssoc @(Append rhs_a_binds (Reverse (TapeUnfoldings rhs_a_binds))) @(Tape rhs_a_binds : D2 t : TPair (D1 t) (TEither (Tape rhs_a_binds) (Tape rhs_b_binds)) : e_binds) @(D2AcE (Select env sto "accum"))
, Refl <- lemAppendAssoc @(Append rhs_b_binds (Reverse (TapeUnfoldings rhs_b_binds))) @(Tape rhs_b_binds : D2 t : TPair (D1 t) (TEither (Tape rhs_a_binds) (Tape rhs_b_binds)) : e_binds) @(D2AcE (Select env sto "accum"))
, let tapeA = tapeTy (subList (bindingsBinds a0) subtapeA)
, let tapeB = tapeTy (subList (bindingsBinds b0) subtapeB)
, let collectA = bindingsCollect a0 subtapeA
, let collectB = bindingsCollect b0 subtapeB
, (tPrimal :: STy t_primal_ty) <- STPair (d1 (typeOf a)) (STEither tapeA tapeB)
, let (a0', wa0') = weakenBindings weakenExpr (WCopy (sinkWithBindings e0)) a0
, let (b0', wb0') = weakenBindings weakenExpr (WCopy (sinkWithBindings e0)) b0
->
subenvPlus (select SMerge des) subA subB $ \subAB sAB_A sAB_B _ ->
subenvPlus (select SMerge des) subAB subE $ \subOut _ _ plus_AB_E ->
let tCaseRet = STPair (tTup (d2e (subList (select SMerge des) subAB))) (STEither (d2 t1) (d2 t2)) in
Ret (e0 `BPush`
(tPrimal,
ECase ext e1
(letBinds a0' (EPair ext (weakenExpr wa0' a1) (EInl ext tapeB (collectA wa0'))))
(letBinds b0' (EPair ext (weakenExpr wb0' b1) (EInr ext tapeA (collectB wb0'))))))
(SEYes subtapeE)
(EFst ext (EVar ext tPrimal IZ))
subOut
(ELet ext
(ECase ext (ESnd ext (EVar ext tPrimal (IS IZ)))
(let (rebinds, prerebinds) = reconstructBindings (subList (bindingsBinds a0) subtapeA) IZ
in letBinds rebinds $
ELet ext
(EVar ext (d2 (typeOf a)) (wSinks @(Tape rhs_a_tape : D2 t : t_primal_ty : Append e_tape (D2AcE (Select env sto "accum"))) (sappend (subList (bindingsBinds a0) subtapeA) prerebinds) @> IS IZ)) $
ELet ext
(weakenExpr (autoWeak (#d (auto1 @(D2 t))
&. #ta0 (subList (bindingsBinds a0) subtapeA)
&. #prea0 prerebinds
&. #recon (tapeA `SCons` d2 (typeOf a) `SCons` SNil)
&. #binds (tPrimal `SCons` subList (bindingsBinds e0) subtapeE)
&. #tl (d2ace (select SAccum des)))
(#d :++: #ta0 :++: #tl)
(#d :++: (#ta0 :++: #prea0) :++: #recon :++: #binds :++: #tl))
a2) $
EPair ext
(expandSubenvZeros (subList (select SMerge des) subAB) sAB_A $
EFst ext (EVar ext (STPair (tTup (d2e (subList (select SMerge des) subA))) (d2 t1)) IZ))
(EInl ext (d2 t2)
(ESnd ext (EVar ext (STPair (tTup (d2e (subList (select SMerge des) subA))) (d2 t1)) IZ))))
(let (rebinds, prerebinds) = reconstructBindings (subList (bindingsBinds b0) subtapeB) IZ
in letBinds rebinds $
ELet ext
(EVar ext (d2 (typeOf a)) (wSinks @(Tape rhs_b_tape : D2 t : t_primal_ty : Append e_tape (D2AcE (Select env sto "accum"))) (sappend (subList (bindingsBinds b0) subtapeB) prerebinds) @> IS IZ)) $
ELet ext
(weakenExpr (autoWeak (#d (auto1 @(D2 t))
&. #tb0 (subList (bindingsBinds b0) subtapeB)
&. #preb0 prerebinds
&. #recon (tapeB `SCons` d2 (typeOf a) `SCons` SNil)
&. #binds (tPrimal `SCons` subList (bindingsBinds e0) subtapeE)
&. #tl (d2ace (select SAccum des)))
(#d :++: #tb0 :++: #tl)
(#d :++: (#tb0 :++: #preb0) :++: #recon :++: #binds :++: #tl))
b2) $
EPair ext
(expandSubenvZeros (subList (select SMerge des) subAB) sAB_B $
EFst ext (EVar ext (STPair (tTup (d2e (subList (select SMerge des) subB))) (d2 t2)) IZ))
(EInr ext (d2 t1)
(ESnd ext (EVar ext (STPair (tTup (d2e (subList (select SMerge des) subB))) (d2 t2)) IZ))))) $
ELet ext
(ELet ext (EJust ext (ESnd ext (EVar ext tCaseRet IZ))) $
weakenExpr (WCopy (wSinks' @[_,_,_])) e2) $
plus_AB_E
(EFst ext (EVar ext tCaseRet (IS IZ)))
(EVar ext (tTup (d2e (subList (select SMerge des) subE))) IZ))
EConst _ t val ->
Ret BTop
SETop
(EConst ext t val)
(subenvNone (select SMerge des))
(ENil ext)
EOp _ op e
| Ret e0 subtape e1 sub e2 <- drev des e ->
case d2op op of
Linear d2opfun ->
Ret e0
subtape
(d1op op e1)
sub
(ELet ext (d2opfun (EVar ext (d2 (opt2 op)) IZ))
(weakenExpr (WCopy WSink) e2))
Nonlinear d2opfun ->
Ret (e0 `BPush` (d1 (typeOf e), e1))
(SEYes subtape)
(d1op op $ EVar ext (d1 (typeOf e)) IZ)
sub
(ELet ext (d2opfun (EVar ext (d1 (typeOf e)) (IS IZ))
(EVar ext (d2 (opt2 op)) IZ))
(weakenExpr (WCopy (wSinks' @[_,_])) e2))
ECustom _ _ _ storety _ pr du a b
-- allowed to ignore a2 because 'a' is the part of the input that is inactive
| Rets binds subtape (RetPair a1 _ _ `SCons` RetPair b1 bsub b2 `SCons` SNil)
<- retConcat des $ drev des a `SCons` drev des b `SCons` SNil ->
Ret (binds `BPush` (typeOf a1, a1)
`BPush` (typeOf b1, weakenExpr WSink b1)
`BPush` (typeOf pr, weakenExpr (WCopy (WCopy WClosed)) pr)
`BPush` (storety, ESnd ext (EVar ext (typeOf pr) IZ)))
(SEYes (SENo (SENo (SENo subtape))))
(EFst ext (EVar ext (typeOf pr) (IS IZ)))
bsub
(ELet ext (weakenExpr (WCopy (WCopy WClosed)) du) $
weakenExpr (WCopy (WSink .> WSink)) b2)
EError _ t s ->
Ret BTop
SETop
(EError ext (d1 t) s)
(subenvNone (select SMerge des))
(ENil ext)
EConstArr _ n t val ->
Ret BTop
SETop
(EConstArr ext n t val)
(subenvNone (select SMerge des))
(ENil ext)
EBuild _ (ndim :: SNat ndim) she (orige :: Ex _ eltty)
| Ret (she0 :: Bindings _ _ she_binds) _ she1 _ _ <- drev des she -- allowed to ignore she2 here because she has a discrete result
, let eltty = typeOf orige
, shty :: STy shty <- tTup (sreplicate ndim tIx)
, Refl <- indexTupD1Id ndim ->
deleteUnused (descrList des) (occEnvPop (occCountAll orige)) $ \(usedSub :: Subenv env env') ->
let e = unsafeWeakenWithSubenv (SEYes usedSub) orige in
subDescr des usedSub $ \usedDes subMergeUsed subAccumUsed subD1eUsed ->
accumPromote eltty usedDes $ \prodes (envPro :: SList _ envPro) proSub wPro ->
case drev (prodes `DPush` (shty, SDiscr)) e of { Ret (e0 :: Bindings _ _ e_binds) (subtapeE :: Subenv _ e_tape) e1 sub e2 ->
case assertSubenvEmpty sub of { Refl ->
let tapety = tapeTy (subList (bindingsBinds e0) subtapeE) in
let collectexpr = bindingsCollect e0 subtapeE in
Ret (BTop `BPush` (shty, letBinds she0 she1)
`BPush` (STArr ndim (STPair (d1 eltty) tapety)
,EBuild ext ndim
(EVar ext shty IZ)
(letBinds (fst (weakenBindings weakenExpr (autoWeak (#ix (shty `SCons` SNil)
&. #sh (shty `SCons` SNil)
&. #d1env (desD1E des)
&. #d1env' (desD1E usedDes))
(#ix :++: LPreW #d1env' #d1env (wUndoSubenv subD1eUsed))
(#ix :++: #sh :++: #d1env))
e0)) $
let w = autoWeak (#ix (shty `SCons` SNil)
&. #sh (shty `SCons` SNil)
&. #e0 (bindingsBinds e0)
&. #d1env (desD1E des)
&. #d1env' (desD1E usedDes))
(#e0 :++: #ix :++: LPreW #d1env' #d1env (wUndoSubenv subD1eUsed))
(#e0 :++: #ix :++: #sh :++: #d1env)
in EPair ext (weakenExpr w e1) (collectexpr w)))
`BPush` (STArr ndim tapety, emap (ESnd ext (EVar ext (STPair (d1 eltty) tapety) IZ))
(EVar ext (STArr ndim (STPair (d1 eltty) tapety)) IZ)))
(SEYes (SENo (SEYes SETop)))
(emap (EFst ext (EVar ext (STPair (d1 eltty) tapety) IZ))
(EVar ext (STArr ndim (STPair (d1 eltty) tapety)) (IS IZ)))
(subenvCompose subMergeUsed proSub)
(let sinkOverEnvPro = wSinks @(D2 t : TArr ndim (Tape e_tape) : Tup (Replicate ndim TIx) : D2AcE (Select env sto "accum")) (d2ace envPro) in
eif (eshapeEmpty ndim (EShape ext (EVar ext (STArr ndim (d2 eltty)) IZ)))
(zeroTup envPro)
(ESnd ext $
uninvertTup (d2e envPro) (STArr ndim STNil) $
makeAccumulators @_ @_ @(TArr ndim TNil) envPro $
EBuild ext ndim (EVar ext shty (sinkOverEnvPro @> IS (IS IZ))) $
-- the cotangent for this element
ELet ext (EIdx ext (EVar ext (STArr ndim (d2 eltty)) (WSink .> sinkOverEnvPro @> IZ))
(EVar ext shty IZ)) $
-- the tape for this element
ELet ext (EIdx ext (EVar ext (STArr ndim tapety) (WSink .> WSink .> sinkOverEnvPro @> IS IZ))
(EVar ext shty (IS IZ))) $
let (rebinds, prerebinds) = reconstructBindings (subList (bindingsBinds e0) subtapeE) IZ
in letBinds rebinds $
weakenExpr (autoWeak (#d (auto1 @(D2 eltty))
&. #pro (d2ace envPro)
&. #etape (subList (bindingsBinds e0) subtapeE)
&. #prerebinds prerebinds
&. #tape (tapety `SCons` SNil)
&. #ix (shty `SCons` SNil)
&. #darr (STArr ndim (d2 eltty) `SCons` SNil)
&. #tapearr (STArr ndim tapety `SCons` SNil)
&. #sh (shty `SCons` SNil)
&. #d2acUsed (d2ace (select SAccum usedDes))
&. #d2acEnv (d2ace (select SAccum des)))
(#pro :++: #d :++: #etape :++: LPreW #d2acUsed #d2acEnv (wUndoSubenv subAccumUsed))
((#etape :++: #prerebinds) :++: #tape :++: #d :++: #ix :++: #pro :++: #darr :++: #tapearr :++: #sh :++: #d2acEnv)
.> wPro (subList (bindingsBinds e0) subtapeE))
e2))
}}
EUnit _ e
| Ret e0 subtape e1 sub e2 <- drev des e ->
Ret e0
subtape
(EUnit ext e1)
sub
(ELet ext (EIdx0 ext (EVar ext (STArr SZ (d2 (typeOf e))) IZ)) $
weakenExpr (WCopy WSink) e2)
EReplicate1Inner _ en e
-- We're allowed to ignore en2 here because the output of 'ei' is discrete.
| Rets binds subtape (RetPair en1 _ _ `SCons` RetPair e1 sub e2 `SCons` SNil)
<- retConcat des $ drev des en `SCons` drev des e `SCons` SNil
, let STArr ndim eltty = typeOf e ->
Ret binds
subtape
(EReplicate1Inner ext en1 e1)
sub
(ELet ext (EFold1Inner ext (EPlus ext eltty (EVar ext (d2 eltty) (IS IZ)) (EVar ext (d2 eltty) IZ))
(EZero ext eltty)
(EVar ext (STArr (SS ndim) (d2 eltty)) IZ)) $
weakenExpr (WCopy WSink) e2)
EIdx0 _ e
| Ret e0 subtape e1 sub e2 <- drev des e
, STArr _ t <- typeOf e ->
Ret e0
subtape
(EIdx0 ext e1)
sub
(ELet ext (EUnit ext (EVar ext (d2 t) IZ)) $
weakenExpr (WCopy WSink) e2)
EIdx1{} -> error "CHAD of EIdx1: Please use EIdx instead"
{-
EIdx1 _ e ei
-- We're allowed to ignore ei2 here because the output of 'ei' is discrete.
| Rets binds subtape (RetPair e1 sub e2 `SCons` RetPair ei1 _ _ `SCons` SNil)
<- retConcat des $ drev des e `SCons` drev des ei `SCons` SNil
, STArr (SS n) eltty <- typeOf e ->
Ret (binds `BPush` (STArr (SS n) (d1 eltty), e1)
`BPush` (tTup (sreplicate (SS n) tIx), EShape ext (EVar ext (STArr (SS n) (d1 eltty)) IZ)))
(SEYes (SENo subtape))
(EIdx1 ext (EVar ext (STArr (SS n) (d1 eltty)) (IS IZ))
(weakenExpr (WSink .> WSink) ei1))
sub
(ELet ext (ebuildUp1 n (EFst ext (EVar ext (tTup (sreplicate (SS n) tIx)) (IS IZ)))
(ESnd ext (EVar ext (tTup (sreplicate (SS n) tIx)) (IS IZ)))
(EVar ext (STArr n (d2 eltty)) (IS IZ))) $
weakenExpr (WCopy (WSink .> WSink)) e2)
-}
EIdx _ e ei
-- We're allowed to ignore ei2 here because the output of 'ei' is discrete.
| Rets binds subtape (RetPair e1 sub e2 `SCons` RetPair ei1 _ _ `SCons` SNil)
<- retConcat des $ drev des e `SCons` drev des ei `SCons` SNil
, STArr n eltty <- typeOf e
, Refl <- indexTupD1Id n
, let tIxN = tTup (sreplicate n tIx) ->
Ret (binds `BPush` (STArr n (d1 eltty), e1)
`BPush` (tIxN, EShape ext (EVar ext (typeOf e1) IZ))
`BPush` (tIxN, weakenExpr (WSink .> WSink) ei1))
(SEYes (SEYes (SENo subtape)))
(EIdx ext (EVar ext (STArr n (d1 eltty)) (IS (IS IZ)))
(EVar ext (tTup (sreplicate n tIx)) IZ))
sub
(ELet ext (EOneHot ext (STArr n eltty) n
(arrIdxToAcIdx (d2 eltty) n $ EVar ext tIxN (IS IZ))
(case n of SZ -> EUnit ext (EVar ext (d2 eltty) IZ)
SS{} | Refl <- lemAcValArrN (d2 eltty) n ->
EPair ext (EVar ext tIxN (IS (IS IZ)))
(EUnit ext (EVar ext (d2 eltty) IZ)))) $
weakenExpr (WCopy (WSink .> WSink .> WSink)) e2)
EShape _ e
-- Allowed to ignore e2 here because the output of EShape is discrete,
-- hence we'd be passing a zero cotangent to e2 anyway.
| Ret e0 subtape e1 _ _ <- drev des e
, STArr n _ <- typeOf e
, Refl <- indexTupD1Id n ->
Ret e0
subtape
(EShape ext e1)
(subenvNone (select SMerge des))
(ENil ext)
ESum1Inner _ e
| Ret e0 subtape e1 sub e2 <- drev des e
, STArr (SS n) t <- typeOf e ->
Ret (e0 `BPush` (STArr (SS n) t, e1)
`BPush` (tTup (sreplicate (SS n) tIx), EShape ext (EVar ext (STArr (SS n) t) IZ)))
(SEYes (SENo subtape))
(ESum1Inner ext (EVar ext (STArr (SS n) t) (IS IZ)))
sub
(ELet ext (EReplicate1Inner ext
(ESnd ext (EVar ext (tTup (sreplicate (SS n) tIx)) (IS IZ)))
(EVar ext (STArr n (d2 t)) IZ)) $
weakenExpr (WCopy (WSink .> WSink)) e2)
EMaximum1Inner _ e -> deriv_extremum (EMaximum1Inner ext) e
EMinimum1Inner _ e -> deriv_extremum (EMinimum1Inner ext) e
-- These should be the next to be implemented, I think
EFold1Inner{} -> err_unsupported "EFold1Inner"
ENothing{} -> err_unsupported "ENothing"
EJust{} -> err_unsupported "EJust"
EMaybe{} -> err_unsupported "EMaybe"
EWith{} -> err_accum
EAccum{} -> err_accum
EZero{} -> err_monoid
EPlus{} -> err_monoid
EOneHot{} -> err_monoid
where
err_accum = error "Accumulator operations unsupported in the source program"
err_monoid = error "Monoid operations unsupported in the source program"
err_unsupported s = error $ "CHAD: unsupported " ++ s
deriv_extremum :: ScalIsNumeric t' ~ True
=> (forall env'. Ex env' (TArr (S n) (TScal t')) -> Ex env' (TArr n (TScal t')))
-> Ex env (TArr (S n) (TScal t')) -> Ret env sto (TArr n (TScal t'))
deriv_extremum extremum e
| Ret e0 subtape e1 sub e2 <- drev des e
, at@(STArr (SS n) t@(STScal st)) <- typeOf e
, let at' = STArr n t
, let tIxN = tTup (sreplicate (SS n) tIx) =
Ret (e0 `BPush` (at, e1)
`BPush` (at', extremum (EVar ext at IZ)))
(SEYes (SEYes subtape))
(EVar ext at' IZ)
sub
(ELet ext (EBuild ext (SS n) (EShape ext (EVar ext at (IS (IS IZ)))) $
ECase ext (EOp ext OIf (EOp ext (OEq st) (EPair ext
(EIdx ext (EVar ext at (IS (IS (IS IZ)))) (EVar ext tIxN IZ))
(EIdx ext (EVar ext at' (IS (IS IZ))) (EFst ext (EVar ext tIxN IZ))))))
(EIdx ext (EVar ext (d2 at') (IS (IS IZ))) (EFst ext (EVar ext tIxN (IS IZ))))
(EZero ext t)) $
weakenExpr (WCopy (WSink .> WSink .> WSink)) e2)
data ChosenStorage = forall s. ((s == "discr") ~ False) => ChosenStorage (Storage s)
data RetScoped env0 sto a s t =
forall shbinds tapebinds env0Merge.
RetScoped
(Bindings Ex (D1E (a : env0)) shbinds) -- shared binds
(Subenv shbinds tapebinds)
(Ex (Append shbinds (D1E (a : env0))) (D1 t))
(Subenv (Select env0 sto "merge") env0Merge)
-- ^ merge contributions to the _enclosing_ merge environment
(Ex (D2 t : Append tapebinds (D2AcE (Select env0 sto "accum")))
(If (s == "discr") (Tup (D2E env0Merge))
(TPair (Tup (D2E env0Merge)) (D2 a))))
-- ^ the merge contributions, plus the cotangent to the argument
-- (if there is any)
deriving instance Show (RetScoped env0 sto a s t)
drevScoped :: forall a s env sto t.
(?config :: CHADConfig)
=> Descr env sto -> STy a -> Storage s
-> Ex (a : env) t
-> RetScoped env sto a s t
drevScoped des argty argsto expr
| Ret e0 subtape e1 sub e2 <- drev (des `DPush` (argty, argsto)) expr
= case argsto of
SMerge ->
case sub of
SEYes sub' -> RetScoped e0 subtape e1 sub' e2
SENo sub' -> RetScoped e0 subtape e1 sub' (EPair ext e2 (EZero ext argty))
SAccum ->
RetScoped e0 subtape e1 sub $
EWith ext (EZero ext argty) $
weakenExpr (autoWeak (#d (auto1 @(D2 t))
&. #body (subList (bindingsBinds e0) subtape)
&. #ac (auto1 @(TAccum (D2 a)))
&. #tl (d2ace (select SAccum des)))
(#d :++: #body :++: #ac :++: #tl)
(#ac :++: #d :++: #body :++: #tl))
e2
SDiscr -> RetScoped e0 subtape e1 sub e2
|