summaryrefslogtreecommitdiff
path: root/src/Data.hs
blob: 60afdd0ec76b0ff2d307bad6062e460e8ba3dee7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
module Data (module Data, (:~:)(Refl)) where

import Data.Functor.Product
import Data.Type.Equality
import Unsafe.Coerce (unsafeCoerce)

import Lemmas (Append)


data Dict c where
  Dict :: c => Dict c


data SList f l where
  SNil :: SList f '[]
  SCons :: f a -> SList f l -> SList f (a : l)
deriving instance (forall a. Show (f a)) => Show (SList f l)
infixr `SCons`

slistMap :: (forall t. f t -> g t) -> SList f list -> SList g list
slistMap _ SNil = SNil
slistMap f (SCons x list) = SCons (f x) (slistMap f list)

slistMapA :: Applicative m => (forall t. f t -> m (g t)) -> SList f list -> m (SList g list)
slistMapA _ SNil = pure SNil
slistMapA f (SCons x list) = SCons <$> f x <*> slistMapA f list

slistZip :: SList f list -> SList g list -> SList (Product f g) list
slistZip SNil SNil = SNil
slistZip (x `SCons` l1) (y `SCons` l2) = Pair x y `SCons` slistZip l1 l2

unSList :: (forall t. f t -> a) -> SList f list -> [a]
unSList _ SNil = []
unSList f (x `SCons` l) = f x : unSList f l

showSList :: (forall t. Int -> f t -> String) -> SList f list -> String
showSList _ SNil = "SNil"
showSList f (x `SCons` l) = f 11 x ++ " `SCons` " ++ showSList f l

sappend :: SList f l1 -> SList f l2 -> SList f (Append l1 l2)
sappend SNil l = l
sappend (SCons x xs) l = SCons x (sappend xs l)

type family Replicate n x where
  Replicate Z x = '[]
  Replicate (S n) x = x : Replicate n x

sreplicate :: SNat n -> f t -> SList f (Replicate n t)
sreplicate SZ _ = SNil
sreplicate (SS n) x = x `SCons` sreplicate n x

data Nat = Z | S Nat
  deriving (Show, Eq, Ord)

type N0 = Z
type N1 = S N0
type N2 = S N1
type N3 = S N2

data SNat n where
  SZ :: SNat Z
  SS :: SNat n -> SNat (S n)
deriving instance Show (SNat n)

instance TestEquality SNat where
  testEquality SZ SZ = Just Refl
  testEquality (SS n) (SS n') | Just Refl <- testEquality n n' = Just Refl
  testEquality _ _ = Nothing

fromSNat :: SNat n -> Int
fromSNat SZ = 0
fromSNat (SS n) = succ (fromSNat n)

unSNat :: SNat n -> Nat
unSNat SZ = Z
unSNat (SS n) = S (unSNat n)

fromNat :: Nat -> Int
fromNat Z = 0
fromNat (S m) = succ (fromNat m)

class KnownNat n where knownNat :: SNat n
instance KnownNat Z where knownNat = SZ
instance KnownNat n => KnownNat (S n) where knownNat = SS knownNat

snatKnown :: SNat n -> Dict (KnownNat n)
snatKnown SZ = Dict
snatKnown (SS n) | Dict <- snatKnown n = Dict

type family n + m where
  Z + m = m
  S n + m = S (n + m)

type family n - m where
  n - Z = n
  S n - S m = n - m

snatAdd :: SNat n -> SNat m -> SNat (n + m)
snatAdd SZ m = m
snatAdd (SS n) m = SS (snatAdd n m)

lemPlusSuccRight :: n + S m :~: S (n + m)
lemPlusSuccRight = unsafeCoerceRefl

lemPlusZero :: n + Z :~: n
lemPlusZero = unsafeCoerceRefl

data Vec n t where
  VNil :: Vec Z t
  (:<) :: t -> Vec n t -> Vec (S n) t
deriving instance Show t => Show (Vec n t)
deriving instance Eq t => Eq (Vec n t)
deriving instance Functor (Vec n)
deriving instance Foldable (Vec n)
deriving instance Traversable (Vec n)

vecLength :: Vec n t -> SNat n
vecLength VNil = SZ
vecLength (_ :< v) = SS (vecLength v)

vecGenerate :: SNat n -> (forall i. SNat i -> t) -> Vec n t
vecGenerate = \n f -> go n f SZ
  where
    go :: SNat n -> (forall i. SNat i -> t) -> SNat i' -> Vec n t
    go SZ _ _ = VNil
    go (SS n) f i = f i :< go n f (SS i)

vecReplicateA :: Applicative f => SNat n -> f a -> f (Vec n a)
vecReplicateA SZ _ = pure VNil
vecReplicateA (SS n) gen = (:<) <$> gen <*> vecReplicateA n gen

vecZipWithA :: Applicative f => (a -> b -> f c) -> Vec n a -> Vec n b -> f (Vec n c)
vecZipWithA _ VNil VNil = pure VNil
vecZipWithA f (x :< xs) (y :< ys) = (:<) <$> f x y <*> vecZipWithA f xs ys

vecInit :: Vec (S n) a -> Vec n a
vecInit (_ :< VNil) = VNil
vecInit (x :< xs@(_ :< _)) = x :< vecInit xs

unsafeCoerceRefl :: a :~: b
unsafeCoerceRefl = unsafeCoerce Refl

data Bag t = BNone | BOne t | BTwo !(Bag t) !(Bag t) | BMany [Bag t] | BList [t]
  deriving (Show, Functor, Foldable, Traversable)

-- | This instance is mostly there just for 'pure'
instance Applicative Bag where
  pure = BOne
  BNone <*> _ = BNone
  BOne f <*> b = f <$> b
  BTwo b1 b2 <*> b = BTwo (b1 <*> b) (b2 <*> b)
  BMany bs <*> b = BMany (map (<*> b) bs)
  BList bs <*> b = BMany (map (<$> b) bs)

instance Semigroup (Bag t) where (<>) = BTwo
instance Monoid (Bag t) where mempty = BNone