1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE ImplicitParams #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
module Interpreter (
interpret,
interpretOpen,
Value(..),
) where
import Control.Monad (foldM, join, when)
import Data.Bifunctor (bimap)
import Data.Char (isSpace)
import Data.Functor.Identity
import Data.Kind (Type)
import Data.Int (Int64)
import Data.IORef
import System.IO (hPutStrLn, stderr)
import System.IO.Unsafe (unsafePerformIO)
import Debug.Trace
import Array
import AST
import AST.Pretty
import CHAD.Types
import Data
import Interpreter.Rep
newtype AcM s a = AcM { unAcM :: IO a }
deriving newtype (Functor, Applicative, Monad)
runAcM :: (forall s. AcM s a) -> a
runAcM (AcM m) = unsafePerformIO m
acmDebugLog :: String -> AcM s ()
acmDebugLog s = AcM (hPutStrLn stderr s)
interpret :: Ex '[] t -> Rep t
interpret = interpretOpen False SNil
-- | Bool: whether to trace execution with debug prints (very verbose)
interpretOpen :: Bool -> SList Value env -> Ex env t -> Rep t
interpretOpen prints env e =
runAcM $
let ?depth = 0
?prints = prints
in interpret' env e
interpret' :: forall env t s. (?prints :: Bool, ?depth :: Int) => SList Value env -> Ex env t -> AcM s (Rep t)
interpret' env e = do
let dep = ?depth
let lenlimit = max 20 (100 - dep)
let trunc s | length s > lenlimit = take (lenlimit - 3) s ++ "..."
| otherwise = s
when ?prints $ acmDebugLog $ replicate dep ' ' ++ "ev: " ++ trunc (ppExpr env e)
res <- let ?depth = dep + 1 in interpret'Rec env e
when ?prints $ acmDebugLog $ replicate dep ' ' ++ "<- " ++ showValue 0 (typeOf e) res ""
return res
interpret'Rec :: forall env t s. (?prints :: Bool, ?depth :: Int) => SList Value env -> Ex env t -> AcM s (Rep t)
interpret'Rec env = \case
EVar _ _ i -> case slistIdx env i of Value x -> return x
ELet _ a b -> do
x <- interpret' env a
let ?depth = ?depth - 1 in interpret' (Value x `SCons` env) b
expr | False && trace ("<i> " ++ takeWhile (not . isSpace) (show expr)) False -> undefined
EPair _ a b -> (,) <$> interpret' env a <*> interpret' env b
EFst _ e -> fst <$> interpret' env e
ESnd _ e -> snd <$> interpret' env e
ENil _ -> return ()
EInl _ _ e -> Left <$> interpret' env e
EInr _ _ e -> Right <$> interpret' env e
ECase _ e a b -> interpret' env e >>= \case
Left x -> interpret' (Value x `SCons` env) a
Right y -> interpret' (Value y `SCons` env) b
ENothing _ _ -> return Nothing
EJust _ e -> Just <$> interpret' env e
EMaybe _ a b e -> maybe (interpret' env a) (\x -> interpret' (Value x `SCons` env) b) =<< interpret' env e
EConstArr _ _ _ v -> return v
EBuild _ dim a b -> do
sh <- unTupRepIdx ShNil ShCons dim <$> interpret' env a
arrayGenerateM sh (\idx -> interpret' (Value (tupRepIdx ixUncons dim idx) `SCons` env) b)
EFold1Inner _ a b c -> do
let f = \x y -> interpret' (Value y `SCons` Value x `SCons` env) a
x0 <- interpret' env b
arr <- interpret' env c
let sh `ShCons` n = arrayShape arr
arrayGenerateM sh $ \idx -> foldM f x0 [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n - 1]]
ESum1Inner _ e -> do
arr <- interpret' env e
let STArr _ (STScal t) = typeOf e
sh `ShCons` n = arrayShape arr
numericIsNum t $ return $ arrayGenerate sh $ \idx -> sum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n - 1]]
EUnit _ e -> arrayGenerateLinM ShNil (\_ -> interpret' env e)
EReplicate1Inner _ a b -> do
n <- fromIntegral @Int64 @Int <$> interpret' env a
arr <- interpret' env b
let sh = arrayShape arr
return $ arrayGenerate (sh `ShCons` n) (\(idx `IxCons` _) -> arrayIndex arr idx)
EMaximum1Inner _ e -> do
arr <- interpret' env e
let STArr _ (STScal t) = typeOf e
sh `ShCons` n = arrayShape arr
numericIsNum t $ return $
arrayGenerate sh (\idx -> maximum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n-1]])
EMinimum1Inner _ e -> do
arr <- interpret' env e
let STArr _ (STScal t) = typeOf e
sh `ShCons` n = arrayShape arr
numericIsNum t $ return $
arrayGenerate sh (\idx -> minimum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n-1]])
EConst _ _ v -> return v
EIdx0 _ e -> (`arrayIndexLinear` 0) <$> interpret' env e
EIdx1 _ a b -> arrayIndex1 <$> interpret' env a <*> (fromIntegral @Int64 @Int <$> interpret' env b)
EIdx _ a b
| STArr n _ <- typeOf a
-> arrayIndex <$> interpret' env a <*> (unTupRepIdx IxNil IxCons n <$> interpret' env b)
EShape _ e | STArr n _ <- typeOf e -> tupRepIdx shUncons n . arrayShape <$> interpret' env e
EOp _ op e -> interpretOp op <$> interpret' env e
ECustom _ _ _ _ pr _ _ e1 e2 -> do
e1' <- interpret' env e1
e2' <- interpret' env e2
interpret' (Value e2' `SCons` Value e1' `SCons` SNil) pr
EWith _ e1 e2 -> do
initval <- interpret' env e1
withAccum (typeOf e1) (typeOf e2) initval $ \accum ->
interpret' (Value accum `SCons` env) e2
EAccum _ i e1 e2 e3 -> do
let STAccum t = typeOf e3
idx <- interpret' env e1
val <- interpret' env e2
accum <- interpret' env e3
accumAddSparse t i accum idx val
EZero _ t -> do
return $ zeroD2 t
EPlus _ t a b -> do
a' <- interpret' env a
b' <- interpret' env b
return $ addD2s t a' b'
EOneHot _ t i a b -> do
a' <- interpret' env a
b' <- interpret' env b
return $ onehotD2 i t a' b'
EError _ _ s -> error $ "Interpreter: Program threw error: " ++ s
interpretOp :: SOp a t -> Rep a -> Rep t
interpretOp op arg = case op of
OAdd st -> numericIsNum st $ uncurry (+) arg
OMul st -> numericIsNum st $ uncurry (*) arg
ONeg st -> numericIsNum st $ negate arg
OLt st -> numericIsNum st $ uncurry (<) arg
OLe st -> numericIsNum st $ uncurry (<=) arg
OEq st -> styIsEq st $ uncurry (==) arg
ONot -> not arg
OAnd -> uncurry (&&) arg
OOr -> uncurry (||) arg
OIf -> if arg then Left () else Right ()
ORound64 -> round arg
OToFl64 -> fromIntegral arg
ORecip st -> floatingIsFractional st $ recip arg
OExp st -> floatingIsFractional st $ exp arg
OLog st -> floatingIsFractional st $ log arg
OIDiv st -> integralIsIntegral st $ uncurry quot arg
where
styIsEq :: SScalTy t -> (Eq (Rep (TScal t)) => r) -> r
styIsEq STI32 = id
styIsEq STI64 = id
styIsEq STF32 = id
styIsEq STF64 = id
styIsEq STBool = id
zeroD2 :: STy t -> Rep (D2 t)
zeroD2 typ = case typ of
STNil -> ()
STPair _ _ -> Nothing
STEither _ _ -> Nothing
STMaybe _ -> Nothing
STArr SZ t -> arrayUnit (zeroD2 t)
STArr n _ -> emptyArray n
STScal sty -> case sty of
STI32 -> ()
STI64 -> ()
STF32 -> 0.0
STF64 -> 0.0
STBool -> ()
STAccum{} -> error "Zero of Accum"
addD2s :: STy t -> Rep (D2 t) -> Rep (D2 t) -> Rep (D2 t)
addD2s typ a b = case typ of
STNil -> ()
STPair t1 t2 -> case (a, b) of
(Nothing, _) -> b
(_, Nothing) -> a
(Just (x1, x2), Just (y1, y2)) -> Just (addD2s t1 x1 y1, addD2s t2 x2 y2)
STEither t1 t2 -> case (a, b) of
(Nothing, _) -> b
(_, Nothing) -> a
(Just (Left x), Just (Left y)) -> Just (Left (addD2s t1 x y))
(Just (Right x), Just (Right y)) -> Just (Right (addD2s t2 x y))
_ -> error "Plus of inconsistent Eithers"
STMaybe t -> case (a, b) of
(Nothing, _) -> b
(_, Nothing) -> a
(Just x, Just y) -> Just (addD2s t x y)
STArr _ t ->
let sh1 = arrayShape a
sh2 = arrayShape b
in if | shapeSize sh1 == 0 -> b
| shapeSize sh2 == 0 -> a
| sh1 == sh2 -> arrayGenerateLin sh1 (\i -> addD2s t (arrayIndexLinear a i) (arrayIndexLinear b i))
| otherwise -> error "Plus of inconsistently shaped arrays"
STScal sty -> case sty of
STI32 -> ()
STI64 -> ()
STF32 -> a + b
STF64 -> a + b
STBool -> ()
STAccum{} -> error "Plus of Accum"
onehotD2 :: SNat i -> STy t -> Rep (AcIdx (D2 t) i) -> Rep (AcVal (D2 t) i) -> Rep (D2 t)
onehotD2 SZ _ () v = v
onehotD2 _ STNil _ _ = ()
onehotD2 (SS SZ ) (STPair _ _ ) () val = Just val
onehotD2 (SS (SS i)) (STPair t1 t2) (Left idx) (Left val) = Just (onehotD2 i t1 idx val, zeroD2 t2)
onehotD2 (SS (SS i)) (STPair t1 t2) (Right idx) (Right val) = Just (zeroD2 t1, onehotD2 i t2 idx val)
onehotD2 (SS _ ) (STPair _ _ ) _ _ = error "onehotD2: pair: mismatched index and value"
onehotD2 (SS SZ ) (STEither _ _ ) () val = Just val
onehotD2 (SS (SS i)) (STEither t1 _ ) (Left idx) (Left val) = Just (Left (onehotD2 i t1 idx val))
onehotD2 (SS (SS i)) (STEither _ t2) (Right idx) (Right val) = Just (Right (onehotD2 i t2 idx val))
onehotD2 (SS _ ) (STEither _ _ ) _ _ = error "onehotD2: either: mismatched index and value"
onehotD2 (SS i ) (STMaybe t) idx val = Just (onehotD2 i t idx val)
onehotD2 (SS i ) (STArr n t) idx val = runIdentity $
onehotArray (d2 t) (\i' idx' v' -> Identity (onehotD2 i' t idx' v')) (Identity (zeroD2 t)) n (SS i) idx val
onehotD2 SS{} STScal{} _ _ = error "onehotD2: cannot index into scalar"
onehotD2 _ STAccum{} _ _ = error "onehotD2: cannot index into accumulator"
withAccum :: STy t -> STy a -> Rep t -> (RepAcSparse t -> AcM s (Rep a)) -> AcM s (Rep a, Rep t)
withAccum t _ initval f = AcM $ do
accum <- newAcSparse t SZ () initval
out <- case f accum of AcM m -> m
val <- readAcSparse t accum
return (out, val)
newAcZero :: STy t -> IO (RepAcSparse t)
newAcZero = \case
STNil -> return ()
STPair t1 t2 -> newIORef =<< (,) <$> newAcZero t1 <*> newAcZero t2
STMaybe _ -> newIORef Nothing
STArr n _ -> newIORef (emptyArray n)
STScal sty -> case sty of
STI32 -> newIORef 0
STI64 -> newIORef 0
STF32 -> newIORef 0.0
STF64 -> newIORef 0.0
STBool -> error "Accumulator of Bool"
STAccum{} -> error "Nested accumulators"
STEither{} -> error "Bare Either in accumulator"
-- | Inverted index: the outermost index is at the /outside/ of this list.
data PartialInvIndex n m where
PIIxEnd :: PartialInvIndex m m
PIIxCons :: Int -> PartialInvIndex n m -> PartialInvIndex (S n) m
-- | Inverted shapey thing: the outermost dimension is at the /outside/ of this list.
data Inverted (f :: Nat -> Type) n where
InvNil :: Inverted f Z
InvCons :: Int -> Inverted f n -> Inverted f (S n)
type InvShape = Inverted Shape
type InvIndex = Inverted Index
class Shapey f where
shapeyNil :: f Z
shapeyCons :: f n -> Int -> f (S n)
shapeyCase :: f n -> (n ~ Z => r) -> (forall m. n ~ S m => f m -> Int -> r) -> r
instance Shapey Index where
shapeyNil = IxNil
shapeyCons = IxCons
shapeyCase IxNil k0 _ = k0
shapeyCase (IxCons idx i) _ k1 = k1 idx i
instance Shapey Shape where
shapeyNil = ShNil
shapeyCons = ShCons
shapeyCase ShNil k0 _ = k0
shapeyCase (ShCons sh n) _ k1 = k1 sh n
invert :: forall f n. Shapey f => f n -> Inverted f n
invert | Refl <- lemPlusZero @n = flip go InvNil
where
go :: forall n' m. f n' -> Inverted f m -> Inverted f (n' + m)
go sh ish = shapeyCase sh
ish
(\sh' n -> case lemPlusSuccRight @n' @m of Refl -> go sh' (InvCons n ish))
uninvert :: forall f n. Shapey f => Inverted f n -> f n
uninvert = go shapeyNil
where
go :: forall n' m. f n' -> Inverted f m -> f (n' + m)
go sh InvNil | Refl <- lemPlusZero @n' = sh
go sh (InvCons n (ish :: Inverted f predm)) | Refl <- lemPlusSuccRight @n' @predm = go (shapeyCons sh n) ish
piindexMatch :: PartialInvIndex n m -> InvIndex n -> Maybe (InvIndex m)
piindexMatch PIIxEnd ix = Just ix
piindexMatch (PIIxCons i pix) (InvCons i' ix)
| i == i' = piindexMatch pix ix
| otherwise = Nothing
piindexConcat :: PartialInvIndex n m -> InvIndex m -> InvIndex n
piindexConcat PIIxEnd ix = ix
piindexConcat (PIIxCons i pix) ix = InvCons i (piindexConcat pix ix)
newAcSparse :: STy t -> SNat i -> Rep (AcIdx t i) -> Rep (AcVal t i) -> IO (RepAcSparse t)
newAcSparse typ SZ () val = case typ of
STNil -> return ()
STPair t1 t2 -> newIORef =<< (,) <$> newAcSparse t1 SZ () (fst val) <*> newAcSparse t2 SZ () (snd val)
STMaybe t -> newIORef =<< traverse (newAcDense t SZ ()) val
STArr _ t -> newIORef =<< traverse (newAcSparse t SZ ()) val
STScal{} -> newIORef val
STAccum{} -> error "Nested accumulators"
STEither{} -> error "Bare Either in accumulator"
newAcSparse typ (SS dep) idx val = case typ of
STNil -> return ()
STPair t1 t2 -> newIORef =<< case (idx, val) of
(Left idx', Left val') -> (,) <$> newAcSparse t1 dep idx' val' <*> newAcZero t2
(Right idx', Right val') -> (,) <$> newAcZero t1 <*> newAcSparse t2 dep idx' val'
_ -> error "Index/value mismatch in newAc pair"
STMaybe t -> newIORef =<< Just <$> newAcDense t dep idx val
STArr dim (t :: STy t) -> newIORef =<< newAcArray dim t (SS dep) idx val
STScal{} -> error "Cannot index into scalar"
STAccum{} -> error "Nested accumulators"
STEither{} -> error "Bare Either in accumulator"
newAcArray :: SNat n -> STy t -> SNat i -> Rep (AcIdx (TArr n t) i) -> Rep (AcVal (TArr n t) i) -> IO (Array n (RepAcSparse t))
newAcArray n t = onehotArray t (newAcSparse t) (newAcZero t) n
onehotArray :: Monad m
=> STy t
-> (forall n'. SNat n' -> Rep (AcIdx t n') -> Rep (AcVal t n') -> m v) -- ^ the "one"
-> m v -- ^ generate a zero value for elsewhere
-> SNat n -> SNat i -> Rep (AcIdx (TArr n t) i) -> Rep (AcVal (TArr n t) i) -> m (Array n v)
onehotArray _ mkone _ _ SZ _ val =
traverse (mkone SZ ()) val
onehotArray (_ :: STy t) mkone mkzero dim dep@SS{} idx val = do
let sh = unTupRepIdx ShNil ShCons dim (fst val)
go mkone dep dim idx (snd val) $ \arr position ->
arrayGenerateM sh (\i -> case uninvert <$> piindexMatch position (invert i) of
Just i' -> return $ arr `arrayIndex` i'
Nothing -> mkzero)
where
go :: Monad m
=> (forall n'. SNat n' -> Rep (AcIdx t n') -> Rep (AcVal t n') -> m v)
-> SNat i -> SNat n -> Rep (AcIdx (TArr n t) i) -> Rep (AcValArr n t i)
-> (forall n'. Array n' v -> PartialInvIndex n n' -> m r) -> m r
go mk SZ _ () val' k = arrayMapM (mk SZ ()) val' >>= \arr -> k arr PIIxEnd
go mk (SS dep') SZ idx' val' k = mk dep' idx' val' >>= \arr -> k (arrayUnit arr) PIIxEnd
go mk (SS dep') (SS dim') (i, idx') val' k =
go mk dep' dim' idx' val' $ \arr pish ->
k arr (PIIxCons (fromIntegral @Int64 @Int i) pish)
newAcDense :: STy t -> SNat i -> Rep (AcIdx t i) -> Rep (AcVal t i) -> IO (RepAcDense t)
newAcDense typ SZ () val = case typ of
STPair t1 t2 -> (,) <$> newAcSparse t1 SZ () (fst val) <*> newAcSparse t2 SZ () (snd val)
STEither t1 t2 -> case val of
Left x -> Left <$> newAcSparse t1 SZ () x
Right y -> Right <$> newAcSparse t2 SZ () y
_ -> error "newAcDense: invalid dense type"
newAcDense typ (SS dep) idx val = case typ of
STPair t1 t2 ->
case (idx, val) of
(Left idx', Left val') -> (,) <$> newAcSparse t1 dep idx' val' <*> newAcZero t2
(Right idx', Right val') -> (,) <$> newAcZero t1 <*> newAcSparse t2 dep idx' val'
_ -> error "Index/value mismatch in newAc pair"
STEither t1 t2 ->
case (idx, val) of
(Left idx', Left val') -> Left <$> newAcSparse t1 dep idx' val'
(Right idx', Right val') -> Right <$> newAcSparse t2 dep idx' val'
_ -> error "Index/value mismatch in newAc either"
_ -> error "newAcDense: invalid dense type"
readAcSparse :: STy t -> RepAcSparse t -> IO (Rep t)
readAcSparse typ val = case typ of
STNil -> return ()
STPair t1 t2 -> do
(a, b) <- readIORef val
(,) <$> readAcSparse t1 a <*> readAcSparse t2 b
STMaybe t -> traverse (readAcDense t) =<< readIORef val
STArr _ t -> traverse (readAcSparse t) =<< readIORef val
STScal{} -> readIORef val
STAccum{} -> error "Nested accumulators"
STEither{} -> error "Bare Either in accumulator"
readAcDense :: STy t -> RepAcDense t -> IO (Rep t)
readAcDense typ val = case typ of
STPair t1 t2 -> (,) <$> readAcSparse t1 (fst val) <*> readAcSparse t2 (snd val)
STEither t1 t2 -> case val of
Left x -> Left <$> readAcSparse t1 x
Right y -> Right <$> readAcSparse t2 y
_ -> error "readAcDense: invalid dense type"
accumAddSparse :: STy t -> SNat i -> RepAcSparse t -> Rep (AcIdx t i) -> Rep (AcVal t i) -> AcM s ()
accumAddSparse typ SZ ref () val = case typ of
STNil -> return ()
STPair t1 t2 -> AcM $ do
(r1, r2) <- readIORef ref
unAcM $ accumAddSparse t1 SZ r1 () (fst val)
unAcM $ accumAddSparse t2 SZ r2 () (snd val)
STMaybe t ->
case val of
Nothing -> return ()
Just val' ->
-- Try adding val' to what's already in ref. The 'join' makes the snd
-- of the function's return value a _continuation_ that is run after
-- the critical section ends.
AcM $ join $ atomicModifyIORef' ref $ \ac -> case ac of
-- Oops, ref's contents was still sparse. Have to initialise
-- it first, then try again.
Nothing -> (ac, do newac <- newAcDense t SZ () val'
join $ atomicModifyIORef' ref $ \ac2 -> case ac2 of
Nothing -> (Just newac, return ())
Just ac2' -> bimap Just unAcM (accumAddDense t SZ ac2' () val'))
-- Yep, ref already had a value in there, so we can just add
-- val' to it recursively.
Just ac' -> bimap Just unAcM (accumAddDense t SZ ac' () val')
STArr _ t -> AcM $ do
refs <- readIORef ref
case (shapeSize (arrayShape refs), shapeSize (arrayShape val)) of
(_, 0) -> return ()
(0, _) -> do
newrefarr <- traverse (newAcSparse t SZ ()) val
join $ atomicModifyIORef' ref $ \refarr ->
if shapeSize (arrayShape refarr) == 0
then (newrefarr, return ())
else -- someone was faster than us in initialising the reference!
(refarr, unAcM $ accumAddSparse typ SZ ref () val) -- just try again from the start (dropping newrefarr for the GC to clean up)
_ | arrayShape refs == arrayShape val ->
sequence_ [unAcM $ accumAddSparse t SZ (arrayIndexLinear refs i) () (arrayIndexLinear val i)
| i <- [0 .. shapeSize (arrayShape val) - 1]]
| otherwise -> error "Array shape mismatch in accum add"
STScal sty -> AcM $ case sty of
STI32 -> atomicModifyIORef' ref (\x -> (x + val, ()))
STI64 -> atomicModifyIORef' ref (\x -> (x + val, ()))
STF32 -> atomicModifyIORef' ref (\x -> (x + val, ()))
STF64 -> atomicModifyIORef' ref (\x -> (x + val, ()))
STBool -> error "Accumulator of Bool"
STAccum{} -> error "Nested accumulators"
STEither{} -> error "Bare Either in accumulator"
accumAddSparse typ (SS dep) ref idx val = case typ of
STNil -> return ()
STPair t1 t2 -> AcM $ do
(ref1, ref2) <- readIORef ref
case (idx, val) of
(Left idx', Left val') -> unAcM $ accumAddSparse t1 dep ref1 idx' val'
(Right idx', Right val') -> unAcM $ accumAddSparse t2 dep ref2 idx' val'
_ -> error "Index/value mismatch in pair accumulator add"
STMaybe t ->
AcM $ join $ atomicModifyIORef' ref $ \case
-- Oops, ref's contents was still sparse. Have to initialise
-- it first, then try again.
Nothing -> (Nothing, do newac <- newAcDense t dep idx val
join $ atomicModifyIORef' ref $ \ac2 -> case ac2 of
Nothing -> (Just newac, return ())
Just ac2' -> bimap Just unAcM (accumAddDense t dep ac2' idx val))
-- Yep, ref already had a value in there, so we can just add
-- val' to it recursively.
Just ac -> bimap Just unAcM (accumAddDense t dep ac idx val)
STArr dim (t :: STy t) -> AcM $ do
refs <- readIORef ref
if shapeSize (arrayShape refs) == 0
then do newrefarr <- newAcArray dim t (SS dep) idx val
join $ atomicModifyIORef' ref $ \refarr ->
if shapeSize (arrayShape refarr) == 0
then (newrefarr, return ())
else -- someone was faster than us in initialising the reference!
(refarr, unAcM $ accumAddSparse typ (SS dep) ref idx val) -- just try again from the start (dropping newrefarr for the GC to clean up)
else do let sh = unTupRepIdx ShNil ShCons dim (fst val)
go (SS dep) (invert sh) idx (snd val)
(\j index idxj valj -> unAcM $ accumAddSparse t j (refs `arrayIndex` index) idxj valj)
(\piix subsh val' -> unAcM $ sequence_
[accumAddSparse t SZ (refs `arrayIndex` uninvert (piindexConcat piix (invert subix)))
() (val' `arrayIndex` subix)
| subix <- enumShape subsh])
where
go :: SNat i -> InvShape n -> Rep (AcIdx (TArr n t) i) -> Rep (AcValArr n t i)
-> (forall j. SNat j -> Index n -> Rep (AcIdx t j) -> Rep (AcVal t j) -> r) -- ^ Indexing into element of the array
-> (forall m. PartialInvIndex n m -> Shape m -> Rep (TArr m t) -> r) -- ^ Accumulating onto a subarray
-> r
go SZ ish () val' _ k0 = k0 PIIxEnd (uninvert ish) val' -- ^ Ran out of AcIdx: accumulating onto subarray
go (SS dep') InvNil idx' val' kj _ = kj dep' IxNil idx' val' -- ^ Ran out of array dimensions: accumulating into (part of) element
go (SS dep') (InvCons _ ish) (i, idx') val' kj k0 =
go dep' ish idx' val'
(\j index idxj valj -> kj j (IxCons index (fromIntegral @Int64 @Int i)) idxj valj)
(\pidxm shm valm -> k0 (PIIxCons (fromIntegral @Int64 @Int i) pidxm) shm valm)
STScal{} -> error "Cannot index into scalar"
STAccum{} -> error "Nested accumulators"
STEither{} -> error "Bare Either in accumulator"
accumAddDense :: forall t i s. STy t -> SNat i -> RepAcDense t -> Rep (AcIdx t i) -> Rep (AcVal t i) -> (RepAcDense t, AcM s ())
accumAddDense typ SZ ref () val = case typ of
STPair t1 t2 ->
(ref, do accumAddSparse t1 SZ (fst ref) () (fst val)
accumAddSparse t2 SZ (snd ref) () (snd val))
STEither t1 t2 ->
case (ref, val) of
(Left ref', Left val') -> (ref, accumAddSparse t1 SZ ref' () val')
(Right ref', Right val') -> (ref, accumAddSparse t2 SZ ref' () val')
_ -> error "Mismatched Either in accumAddDense either"
_ -> error "accumAddDense: invalid dense type"
accumAddDense typ (SS dep) ref idx val = case typ of
STPair t1 t2 ->
case (idx, val) of
(Left idx', Left val') -> (ref, accumAddSparse t1 dep (fst ref) idx' val')
(Right idx', Right val') -> (ref, accumAddSparse t2 dep (snd ref) idx' val')
_ -> error "Mismatched Either in accumAddDense pair"
STEither t1 t2 ->
case (ref, idx, val) of
(Left ref', Left idx', Left val') -> (Left ref', accumAddSparse t1 dep ref' idx' val')
(Right ref', Right idx', Right val') -> (Right ref', accumAddSparse t2 dep ref' idx' val')
_ -> error "Mismatched Either in accumAddDense either"
_ -> error "accumAddDense: invalid dense type"
numericIsNum :: ScalIsNumeric st ~ True => SScalTy st -> ((Num (ScalRep st), Ord (ScalRep st)) => r) -> r
numericIsNum STI32 = id
numericIsNum STI64 = id
numericIsNum STF32 = id
numericIsNum STF64 = id
floatingIsFractional :: ScalIsFloating st ~ True => SScalTy st -> ((Floating (ScalRep st), Ord (ScalRep st), ScalIsNumeric st ~ True, ScalIsFloating st ~ True) => r) -> r
floatingIsFractional STF32 = id
floatingIsFractional STF64 = id
integralIsIntegral :: ScalIsIntegral st ~ True => SScalTy st -> ((Integral (ScalRep st), Ord (ScalRep st), ScalIsNumeric st ~ True, ScalIsIntegral st ~ True) => r) -> r
integralIsIntegral STI32 = id
integralIsIntegral STI64 = id
unTupRepIdx :: f Z -> (forall m. f m -> Int -> f (S m))
-> SNat n -> Rep (Tup (Replicate n TIx)) -> f n
unTupRepIdx nil _ SZ _ = nil
unTupRepIdx nil cons (SS n) (idx, i) = unTupRepIdx nil cons n idx `cons` fromIntegral @Int64 @Int i
tupRepIdx :: (forall m. f (S m) -> (f m, Int))
-> SNat n -> f n -> Rep (Tup (Replicate n TIx))
tupRepIdx _ SZ _ = ()
tupRepIdx uncons (SS n) tup =
let (tup', i) = uncons tup
in ((,) $! tupRepIdx uncons n tup') $! fromIntegral @Int @Int64 i
ixUncons :: Index (S n) -> (Index n, Int)
ixUncons (IxCons idx i) = (idx, i)
shUncons :: Shape (S n) -> (Shape n, Int)
shUncons (ShCons idx i) = (idx, i)
|