1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE ImplicitParams #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
module Interpreter (
interpret,
interpretOpen,
Value(..),
) where
import Control.Monad (foldM, join, when, forM_)
import Data.Bitraversable (bitraverse)
import Data.Char (isSpace)
import Data.Functor.Identity
import qualified Data.Functor.Product as Product
import Data.Int (Int64)
import Data.IORef
import System.IO (hPutStrLn, stderr)
import System.IO.Unsafe (unsafePerformIO)
import Debug.Trace
import Array
import AST
import AST.Pretty
import Data
import Interpreter.Rep
newtype AcM s a = AcM { unAcM :: IO a }
deriving newtype (Functor, Applicative, Monad)
runAcM :: (forall s. AcM s a) -> a
runAcM (AcM m) = unsafePerformIO m
acmDebugLog :: String -> AcM s ()
acmDebugLog s = AcM (hPutStrLn stderr s)
data V t = V (STy t) (Rep t)
interpret :: Ex '[] t -> Rep t
interpret = interpretOpen False SNil SNil
-- | Bool: whether to trace execution with debug prints (very verbose)
interpretOpen :: Bool -> SList STy env -> SList Value env -> Ex env t -> Rep t
interpretOpen prints env venv e =
runAcM $
let ?depth = 0
?prints = prints
in interpret' (slistMap (\(Product.Pair t (Value v)) -> V t v) (slistZip env venv)) e
interpret' :: forall env t s. (?prints :: Bool, ?depth :: Int)
=> SList V env -> Ex env t -> AcM s (Rep t)
interpret' env e = do
let tenv = slistMap (\(V t _) -> t) env
let dep = ?depth
let lenlimit = max 20 (100 - dep)
let replace a b = map (\c -> if c == a then b else c)
let trunc s | length s > lenlimit = take (lenlimit - 3) (replace '\n' ' ' s) ++ "..."
| otherwise = replace '\n' ' ' s
when ?prints $ acmDebugLog $ replicate dep ' ' ++ "ev: " ++ trunc (ppExpr tenv e)
res <- let ?depth = dep + 1 in interpret'Rec env e
when ?prints $ acmDebugLog $ replicate dep ' ' ++ "<- " ++ showValue 0 (typeOf e) res ""
return res
interpret'Rec :: forall env t s. (?prints :: Bool, ?depth :: Int) => SList V env -> Ex env t -> AcM s (Rep t)
interpret'Rec env = \case
EVar _ _ i -> case slistIdx env i of V _ x -> return x
ELet _ a b -> do
x <- interpret' env a
let ?depth = ?depth - 1 in interpret' (V (typeOf a) x `SCons` env) b
expr | False && trace ("<i> " ++ takeWhile (not . isSpace) (show expr)) False -> undefined
EPair _ a b -> (,) <$> interpret' env a <*> interpret' env b
EFst _ e -> fst <$> interpret' env e
ESnd _ e -> snd <$> interpret' env e
ENil _ -> return ()
EInl _ _ e -> Left <$> interpret' env e
EInr _ _ e -> Right <$> interpret' env e
ECase _ e a b ->
let STEither t1 t2 = typeOf e
in interpret' env e >>= \case
Left x -> interpret' (V t1 x `SCons` env) a
Right y -> interpret' (V t2 y `SCons` env) b
ENothing _ _ -> return Nothing
EJust _ e -> Just <$> interpret' env e
EMaybe _ a b e ->
let STMaybe t1 = typeOf e
in maybe (interpret' env a) (\x -> interpret' (V t1 x `SCons` env) b) =<< interpret' env e
ELNil _ _ _ -> return Nothing
ELInl _ _ e -> Just . Left <$> interpret' env e
ELInr _ _ e -> Just . Right <$> interpret' env e
ELCase _ e a b c ->
let STLEither t1 t2 = typeOf e
in interpret' env e >>= \case
Nothing -> interpret' env a
Just (Left x) -> interpret' (V t1 x `SCons` env) b
Just (Right y) -> interpret' (V t2 y `SCons` env) c
EConstArr _ _ _ v -> return v
EBuild _ dim a b -> do
sh <- unTupRepIdx ShNil ShCons dim <$> interpret' env a
arrayGenerateM sh (\idx -> interpret' (V (tTup (sreplicate dim tIx)) (tupRepIdx ixUncons dim idx) `SCons` env) b)
EFold1Inner _ _ a b c -> do
let t = typeOf b
let f = \x y -> interpret' (V t y `SCons` V t x `SCons` env) a
x0 <- interpret' env b
arr <- interpret' env c
let sh `ShCons` n = arrayShape arr
arrayGenerateM sh $ \idx -> foldM f x0 [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n - 1]]
ESum1Inner _ e -> do
arr <- interpret' env e
let STArr _ (STScal t) = typeOf e
sh `ShCons` n = arrayShape arr
numericIsNum t $ return $ arrayGenerate sh $ \idx -> sum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n - 1]]
EUnit _ e -> arrayGenerateLinM ShNil (\_ -> interpret' env e)
EReplicate1Inner _ a b -> do
n <- fromIntegral @Int64 @Int <$> interpret' env a
arr <- interpret' env b
let sh = arrayShape arr
return $ arrayGenerate (sh `ShCons` n) (\(idx `IxCons` _) -> arrayIndex arr idx)
EMaximum1Inner _ e -> do
arr <- interpret' env e
let STArr _ (STScal t) = typeOf e
sh `ShCons` n = arrayShape arr
numericIsNum t $ return $
arrayGenerate sh (\idx -> maximum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n-1]])
EMinimum1Inner _ e -> do
arr <- interpret' env e
let STArr _ (STScal t) = typeOf e
sh `ShCons` n = arrayShape arr
numericIsNum t $ return $
arrayGenerate sh (\idx -> minimum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n-1]])
EConst _ _ v -> return v
EIdx0 _ e -> (`arrayIndexLinear` 0) <$> interpret' env e
EIdx1 _ a b -> arrayIndex1 <$> interpret' env a <*> (fromIntegral @Int64 @Int <$> interpret' env b)
EIdx _ a b ->
let STArr n _ = typeOf a
in arrayIndex <$> interpret' env a <*> (unTupRepIdx IxNil IxCons n <$> interpret' env b)
EShape _ e | STArr n _ <- typeOf e -> tupRepIdx shUncons n . arrayShape <$> interpret' env e
EOp _ op e -> interpretOp op <$> interpret' env e
ECustom _ t1 t2 _ pr _ _ e1 e2 -> do
e1' <- interpret' env e1
e2' <- interpret' env e2
interpret' (V t2 e2' `SCons` V t1 e1' `SCons` SNil) pr
EWith _ t e1 e2 -> do
initval <- interpret' env e1
withAccum t (typeOf e2) initval $ \accum ->
interpret' (V (STAccum t) accum `SCons` env) e2
EAccum _ t p e1 e2 e3 -> do
idx <- interpret' env e1
val <- interpret' env e2
accum <- interpret' env e3
accumAddSparse t p accum idx val
EZero _ t ezi -> do
zi <- interpret' env ezi
return $ zeroM t zi
EPlus _ t a b -> do
a' <- interpret' env a
b' <- interpret' env b
return $ addM t a' b'
EOneHot _ t p a b -> do
a' <- interpret' env a
b' <- interpret' env b
return $ onehotM p t a' b'
EError _ _ s -> error $ "Interpreter: Program threw error: " ++ s
interpretOp :: SOp a t -> Rep a -> Rep t
interpretOp op arg = case op of
OAdd st -> numericIsNum st $ uncurry (+) arg
OMul st -> numericIsNum st $ uncurry (*) arg
ONeg st -> numericIsNum st $ negate arg
OLt st -> numericIsNum st $ uncurry (<) arg
OLe st -> numericIsNum st $ uncurry (<=) arg
OEq st -> styIsEq st $ uncurry (==) arg
ONot -> not arg
OAnd -> uncurry (&&) arg
OOr -> uncurry (||) arg
OIf -> if arg then Left () else Right ()
ORound64 -> round arg
OToFl64 -> fromIntegral arg
ORecip st -> floatingIsFractional st $ recip arg
OExp st -> floatingIsFractional st $ exp arg
OLog st -> floatingIsFractional st $ log arg
OIDiv st -> integralIsIntegral st $ uncurry quot arg
OMod st -> integralIsIntegral st $ uncurry rem arg
where
styIsEq :: SScalTy t -> (Eq (Rep (TScal t)) => r) -> r
styIsEq STI32 = id
styIsEq STI64 = id
styIsEq STF32 = id
styIsEq STF64 = id
styIsEq STBool = id
zeroM :: SMTy t -> Rep (ZeroInfo t) -> Rep t
zeroM typ zi = case typ of
SMTNil -> ()
SMTPair t1 t2 -> (zeroM t1 (fst zi), zeroM t2 (snd zi))
SMTLEither _ _ -> Nothing
SMTMaybe _ -> Nothing
SMTArr _ t -> arrayMap (zeroM t) zi
SMTScal sty -> case sty of
STI32 -> 0
STI64 -> 0
STF32 -> 0.0
STF64 -> 0.0
addM :: SMTy t -> Rep t -> Rep t -> Rep t
addM typ a b = case typ of
SMTNil -> ()
SMTPair t1 t2 -> (addM t1 (fst a) (fst b), addM t2 (snd a) (snd b))
SMTLEither t1 t2 -> case (a, b) of
(Nothing, _) -> b
(_, Nothing) -> a
(Just (Left x), Just (Left y)) -> Just (Left (addM t1 x y))
(Just (Right x), Just (Right y)) -> Just (Right (addM t2 x y))
_ -> error "Plus of inconsistent LEithers"
SMTMaybe t -> case (a, b) of
(Nothing, _) -> b
(_, Nothing) -> a
(Just x, Just y) -> Just (addM t x y)
SMTArr _ t ->
let sh1 = arrayShape a
sh2 = arrayShape b
in if | shapeSize sh1 == 0 -> b
| shapeSize sh2 == 0 -> a
| sh1 == sh2 -> arrayGenerateLin sh1 (\i -> addM t (arrayIndexLinear a i) (arrayIndexLinear b i))
| otherwise -> error "Plus of inconsistently shaped arrays"
SMTScal sty -> numericIsNum sty $ a + b
onehotM :: SAcPrj p a b -> SMTy a -> Rep (AcIdx p a) -> Rep b -> Rep a
onehotM SAPHere _ _ val = val
onehotM (SAPFst prj) (SMTPair a b) idx val = (onehotM prj a (fst idx) val, zeroM b (snd idx))
onehotM (SAPSnd prj) (SMTPair a b) idx val = (zeroM a (fst idx), onehotM prj b (snd idx) val)
onehotM (SAPLeft prj) (SMTLEither a _) idx val = Just (Left (onehotM prj a idx val))
onehotM (SAPRight prj) (SMTLEither _ b) idx val = Just (Right (onehotM prj b idx val))
onehotM (SAPJust prj) (SMTMaybe a) idx val = Just (onehotM prj a idx val)
onehotM (SAPArrIdx prj) (SMTArr n a) idx val =
runIdentity $ onehotArray (\idx' -> Identity (onehotM prj a idx' val)) (\zi -> Identity (zeroM a zi)) n prj idx
withAccum :: SMTy t -> STy a -> Rep t -> (RepAc t -> AcM s (Rep a)) -> AcM s (Rep a, Rep t)
withAccum t _ initval f = AcM $ do
accum <- newAcDense t initval
out <- unAcM $ f accum
val <- readAc t accum
return (out, val)
newAcZero :: SMTy t -> Rep (ZeroInfo t) -> IO (RepAc t)
newAcZero typ zi = case typ of
SMTNil -> return ()
SMTPair t1 t2 -> bitraverse (newAcZero t1) (newAcZero t2) zi
SMTLEither{} -> newIORef Nothing
SMTMaybe _ -> newIORef Nothing
SMTArr _ t -> arrayMapM (newAcZero t) zi
SMTScal sty -> numericIsNum sty $ newIORef 0
newAcDense :: SMTy a -> Rep a -> IO (RepAc a)
newAcDense typ val = case typ of
SMTNil -> return ()
SMTPair t1 t2 -> bitraverse (newAcDense t1) (newAcDense t2) val
SMTLEither t1 t2 -> newIORef =<< traverse (bitraverse (newAcDense t1) (newAcDense t2)) val
SMTMaybe t1 -> newIORef =<< traverse (newAcDense t1) val
SMTArr _ t1 -> arrayMapM (newAcDense t1) val
SMTScal _ -> newIORef val
newAcSparse :: SMTy a -> SAcPrj p a b -> Rep (AcIdx p a) -> Rep b -> IO (RepAc a)
newAcSparse typ prj idx val = case (typ, prj) of
(_, SAPHere) -> newAcDense typ val
(SMTPair t1 t2, SAPFst prj') ->
(,) <$> newAcSparse t1 prj' (fst idx) val <*> newAcZero t2 (snd idx)
(SMTPair t1 t2, SAPSnd prj') ->
(,) <$> newAcZero t1 (fst idx) <*> newAcSparse t2 prj' (snd idx) val
(SMTLEither t1 _, SAPLeft prj') -> newIORef . Just . Left =<< newAcSparse t1 prj' idx val
(SMTLEither _ t2, SAPRight prj') -> newIORef . Just . Right =<< newAcSparse t2 prj' idx val
(SMTMaybe t1, SAPJust prj') -> newIORef . Just =<< newAcSparse t1 prj' idx val
(SMTArr n t, SAPArrIdx prj') -> onehotArray (\idx' -> newAcSparse t prj' idx' val) (newAcZero t) n prj' idx
onehotArray :: Monad m
=> (Rep (AcIdx p a) -> m v) -- ^ the "one"
-> (Rep (ZeroInfo a) -> m v) -- ^ the "zero"
-> SNat n -> SAcPrj p a b -> Rep (AcIdx (APArrIdx p) (TArr n a)) -> m (Array n v)
onehotArray mkone mkzero n _ ((arrindex', ziarr), idx) =
let arrindex = unTupRepIdx IxNil IxCons n arrindex'
arrsh = arrayShape ziarr
!linindex = toLinearIndex arrsh arrindex
in arrayGenerateLinM arrsh (\i -> if i == linindex then mkone idx else mkzero (ziarr `arrayIndexLinear` i))
readAc :: SMTy t -> RepAc t -> IO (Rep t)
readAc typ val = case typ of
SMTNil -> return ()
SMTPair t1 t2 -> bitraverse (readAc t1) (readAc t2) val
SMTLEither t1 t2 -> traverse (bitraverse (readAc t1) (readAc t2)) =<< readIORef val
SMTMaybe t -> traverse (readAc t) =<< readIORef val
SMTArr _ t -> traverse (readAc t) val
SMTScal _ -> readIORef val
accumAddDense :: SMTy a -> RepAc a -> Rep a -> AcM s ()
accumAddDense typ ref val = case typ of
SMTNil -> return ()
SMTPair t1 t2 -> do
accumAddDense t1 (fst ref) (fst val)
accumAddDense t2 (snd ref) (snd val)
SMTLEither{} ->
case val of
Nothing -> return ()
Just (Left val1) -> accumAddSparse typ (SAPLeft SAPHere) ref () val1
Just (Right val2) -> accumAddSparse typ (SAPRight SAPHere) ref () val2
SMTMaybe{} ->
case val of
Nothing -> return ()
Just val' -> accumAddSparse typ (SAPJust SAPHere) ref () val'
SMTArr _ t1 ->
forM_ [0 .. arraySize ref - 1] $ \i ->
accumAddDense t1 (arrayIndexLinear ref i) (arrayIndexLinear val i)
SMTScal sty -> numericIsNum sty $ AcM $ atomicModifyIORef' ref (\x -> (x + val, ()))
accumAddSparse :: SMTy a -> SAcPrj p a b -> RepAc a -> Rep (AcIdx p a) -> Rep b -> AcM s ()
accumAddSparse typ prj ref idx val = case (typ, prj) of
(_, SAPHere) -> accumAddDense typ ref val
(SMTPair t1 _, SAPFst prj') -> accumAddSparse t1 prj' (fst ref) (fst idx) val
(SMTPair _ t2, SAPSnd prj') -> accumAddSparse t2 prj' (snd ref) (snd idx) val
(SMTLEither t1 _, SAPLeft prj') ->
realiseMaybeSparse ref (Left <$> newAcSparse t1 prj' idx val)
(\case Left ac1 -> accumAddSparse t1 prj' ac1 idx val
Right{} -> error "Mismatched Either in accumAddSparse (r +l)")
(SMTLEither _ t2, SAPRight prj') ->
realiseMaybeSparse ref (Right <$> newAcSparse t2 prj' idx val)
(\case Right ac2 -> accumAddSparse t2 prj' ac2 idx val
Left{} -> error "Mismatched Either in accumAddSparse (l +r)")
(SMTMaybe t1, SAPJust prj') ->
realiseMaybeSparse ref (newAcSparse t1 prj' idx val)
(\ac -> accumAddSparse t1 prj' ac idx val)
(SMTArr n t1, SAPArrIdx prj') ->
let ((arrindex', ziarr), idx') = idx
arrindex = unTupRepIdx IxNil IxCons n arrindex'
arrsh = arrayShape ziarr
linindex = toLinearIndex arrsh arrindex
in accumAddSparse t1 prj' (arrayIndexLinear ref linindex) idx' val
realiseMaybeSparse :: IORef (Maybe a) -> IO a -> (a -> AcM s ()) -> AcM s ()
realiseMaybeSparse ref makeval modifyval =
-- Try modifying what's already in ref. The 'join' makes the snd
-- of the function's return value a _continuation_ that is run after
-- the critical section ends.
AcM $ join $ atomicModifyIORef' ref $ \ac -> case ac of
-- Oops, ref's contents was still sparse. Have to initialise
-- it first, then try again.
Nothing -> (ac, do val <- makeval
join $ atomicModifyIORef' ref $ \ac' -> case ac' of
Nothing -> (Just val, return ())
Just val' -> (ac', unAcM $ modifyval val'))
-- Yep, ref already had a value in there, so we can just add
-- val' to it recursively.
Just val -> (ac, unAcM $ modifyval val)
numericIsNum :: ScalIsNumeric st ~ True => SScalTy st -> ((Num (ScalRep st), Ord (ScalRep st)) => r) -> r
numericIsNum STI32 = id
numericIsNum STI64 = id
numericIsNum STF32 = id
numericIsNum STF64 = id
floatingIsFractional :: ScalIsFloating st ~ True => SScalTy st -> ((Floating (ScalRep st), Ord (ScalRep st), ScalIsNumeric st ~ True, ScalIsFloating st ~ True) => r) -> r
floatingIsFractional STF32 = id
floatingIsFractional STF64 = id
integralIsIntegral :: ScalIsIntegral st ~ True => SScalTy st -> ((Integral (ScalRep st), Ord (ScalRep st), ScalIsNumeric st ~ True, ScalIsIntegral st ~ True) => r) -> r
integralIsIntegral STI32 = id
integralIsIntegral STI64 = id
unTupRepIdx :: f Z -> (forall m. f m -> Int -> f (S m))
-> SNat n -> Rep (Tup (Replicate n TIx)) -> f n
unTupRepIdx nil _ SZ _ = nil
unTupRepIdx nil cons (SS n) (idx, i) = unTupRepIdx nil cons n idx `cons` fromIntegral @Int64 @Int i
tupRepIdx :: (forall m. f (S m) -> (f m, Int))
-> SNat n -> f n -> Rep (Tup (Replicate n TIx))
tupRepIdx _ SZ _ = ()
tupRepIdx uncons (SS n) tup =
let (tup', i) = uncons tup
in ((,) $! tupRepIdx uncons n tup') $! fromIntegral @Int @Int64 i
ixUncons :: Index (S n) -> (Index n, Int)
ixUncons (IxCons idx i) = (idx, i)
shUncons :: Shape (S n) -> (Shape n, Int)
shUncons (ShCons idx i) = (idx, i)
|