summaryrefslogtreecommitdiff
path: root/src/Simplify.hs
blob: ea3bb95cdc0659909f509bb9ccb19f35a2866d20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ImplicitParams #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
module Simplify (
  simplifyN, simplifyFix,
  SimplifyConfig(..), simplifyWith, simplifyFixWith,
) where

import Data.Function (fix)
import Data.Monoid (Any(..))
import Data.Type.Equality (testEquality)

import AST
import AST.Count
import CHAD.Types
import Data


-- | This has no fields now, hence this type is useless as-is. When debugging, however, it's useful to be able to add some.
data SimplifyConfig = SimplifyConfig

defaultSimplifyConfig :: SimplifyConfig
defaultSimplifyConfig = SimplifyConfig

simplifyN :: KnownEnv env => Int -> Ex env t -> Ex env t
simplifyN 0 = id
simplifyN n = simplifyN (n - 1) . simplify

simplify :: forall env t. KnownEnv env => Ex env t -> Ex env t
simplify =
  let ?accumInScope = checkAccumInScope @env knownEnv
      ?config = defaultSimplifyConfig
  in snd . simplify'

simplifyWith :: forall env t. KnownEnv env => SimplifyConfig -> Ex env t -> Ex env t
simplifyWith config =
  let ?accumInScope = checkAccumInScope @env knownEnv
      ?config = config
  in snd . simplify'

simplifyFix :: forall env t. KnownEnv env => Ex env t -> Ex env t
simplifyFix = simplifyFixWith defaultSimplifyConfig

simplifyFixWith :: forall env t. KnownEnv env => SimplifyConfig -> Ex env t -> Ex env t
simplifyFixWith config =
  let ?accumInScope = checkAccumInScope @env knownEnv
      ?config = config
  in fix $ \loop e ->
            let (Any act, e') = simplify' e
            in if act then loop e' else e'

simplify' :: (?accumInScope :: Bool, ?config :: SimplifyConfig) => Ex env t -> (Any, Ex env t)
simplify' = \case
  -- inlining
  ELet _ rhs body
    | cheapExpr rhs
    -> acted $ simplify' (substInline rhs body)

    | Occ lexOcc runOcc <- occCount IZ body
    , ((not ?accumInScope || not (hasAdds rhs)) && lexOcc <= One && runOcc <= One)  -- without effects, normal rules apply
          || (lexOcc == One && runOcc == One)  -- with effects, linear inlining is still allowed, but weakening is not
    -> acted $ simplify' (substInline rhs body)

  -- let splitting / let peeling
  ELet _ (EPair _ a b) body ->
    acted $ simplify' $
      ELet ext a $
      ELet ext (weakenExpr WSink b) $
        subst (\_ t -> \case IZ -> EPair ext (EVar ext (typeOf a) (IS IZ)) (EVar ext (typeOf b) IZ)
                             IS i -> EVar ext t (IS (IS i)))
              body
  ELet _ (EJust _ a) body ->
    acted $ simplify' $ ELet ext a $ subst0 (EJust ext (EVar ext (typeOf a) IZ)) body
  ELet _ (EInl _ t2 a) body ->
    acted $ simplify' $ ELet ext a $ subst0 (EInl ext t2 (EVar ext (typeOf a) IZ)) body
  ELet _ (EInr _ t1 a) body ->
    acted $ simplify' $ ELet ext a $ subst0 (EInr ext t1 (EVar ext (typeOf a) IZ)) body

  -- let rotation
  ELet _ (ELet _ rhs a) b ->
    acted $ simplify' $
      ELet ext rhs $
      ELet ext a $
        weakenExpr (WCopy WSink) (snd (simplify' b))

  -- beta rules for products
  EFst _ (EPair _ e e')
    | not (hasAdds e') -> acted $ simplify' e
    | otherwise -> acted $ simplify' $ ELet ext e' (weakenExpr WSink e)
  ESnd _ (EPair _ e' e)
    | not (hasAdds e') -> acted $ simplify' e
    | otherwise -> acted $ simplify' $ ELet ext e' (weakenExpr WSink e)

  -- beta rules for coproducts
  ECase _ (EInl _ _ e) rhs _ -> acted $ simplify' (ELet ext e rhs)
  ECase _ (EInr _ _ e) _ rhs -> acted $ simplify' (ELet ext e rhs)

  -- beta rules for maybe
  EMaybe _ e1 _ ENothing{} -> acted $ simplify' e1
  EMaybe _ _ e1 (EJust _ e2) -> acted $ simplify' $ ELet ext e2 e1

  -- let floating
  EFst _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (EFst ext body))
  ESnd _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (ESnd ext body))
  ECase _ (ELet _ rhs body) e1 e2 -> acted $ simplify' (ELet ext rhs (ECase ext body (weakenExpr (WCopy WSink) e1) (weakenExpr (WCopy WSink) e2)))
  EIdx0 _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (EIdx0 ext body))
  EIdx1 _ (ELet _ rhs body) e -> acted $ simplify' (ELet ext rhs (EIdx1 ext body (weakenExpr WSink e)))
  EAccum _ t p e1 (ELet _ rhs body) acc ->
    acted $ simplify' $
      ELet ext rhs $
        EAccum ext t p (weakenExpr WSink e1) body (weakenExpr WSink acc)

  -- let () = e in ()  ~>  e
  ELet _ e1 (ENil _) | STNil <- typeOf e1 ->
    acted $ simplify' e1

  -- projection down-commuting
  EFst _ (ECase _ e1 e2 e3) ->
    acted $ simplify' $
      ECase ext e1 (EFst ext e2) (EFst ext e3)
  ESnd _ (ECase _ e1 e2 e3) ->
    acted $ simplify' $
      ECase ext e1 (ESnd ext e2) (ESnd ext e3)

  -- TODO: more array indexing
  EIdx _ (EReplicate1Inner _ _ e2) e3 -> acted $ simplify' $ EIdx ext e2 (EFst ext e3)
  EIdx _ (EUnit _ e1) _ -> acted $ simplify' $ e1

  -- TODO: more constant folding
  EOp _ OIf (EConst _ STBool True) -> (Any True, EInl ext STNil (ENil ext))
  EOp _ OIf (EConst _ STBool False) -> (Any True, EInr ext STNil (ENil ext))

  -- inline cheap array constructors
  ELet _ (EReplicate1Inner _ e1 e2) e3 ->
    acted $ simplify' $
      ELet ext (EPair ext e1 e2) $
        let v = EVar ext (STPair tIx (typeOf e2)) IZ
        in subst0 (EReplicate1Inner ext (EFst ext v) (ESnd ext v)) e3
  -- -- TODO: This is a bad idea and anyway only helps in practice if (!) is
  -- -- cheap, which it can't be because (!) is not cheap if you do AD after.
  -- -- Should do proper SoA representation.
  -- ELet _ (EBuild _ n e1 e2) e3 | cheapExpr e2 ->
  --   acted $ simplify' $
  --     ELet ext e1 $
  --       subst0 (EBuild ext n (EVar ext (tTup (sreplicate n tIx)) IZ) (weakenExpr (WCopy WSink) e2)) e3

  -- eta rule for unit
  e | STNil <- typeOf e, not ?accumInScope || not (hasAdds e) ->
    case e of
      ENil _ -> (Any False, e)
      _      -> (Any True, ENil ext)

  EBuild _ SZ _ e ->
    acted $ simplify' $ EUnit ext (substInline (ENil ext) e)

  -- monoid rules
  EAccum _ t p e1 e2 acc -> do
    e1' <- simplify' e1
    e2' <- simplify' e2
    acc' <- simplify' acc
    simplifyOneHotTerm (OneHotTerm t p e1' e2')
      (Any True, ENil ext)
      (\e -> (Any False, EAccum ext t SAPHere (ENil ext) e acc'))
      (\(OneHotTerm t' p' e1'' e2'') -> return (EAccum ext t' p' e1'' e2'' acc'))
  EPlus _ _ (EZero _ _) e -> acted $ simplify' e
  EPlus _ _ e (EZero _ _) -> acted $ simplify' e
  EOneHot _ t p e1 e2 -> do
    e1' <- simplify' e1
    e2' <- simplify' e2
    simplifyOneHotTerm (OneHotTerm t p e1' e2')
      (Any True, EZero ext t)
      (\e -> (Any True, e))
      (\(OneHotTerm t' p' e1'' e2'') -> return (EOneHot ext t' p' e1'' e2''))

  -- type-specific equations for plus
  EPlus _ STNil _ _ -> (Any True, ENil ext)

  EPlus _ (STPair t1 t2) (EJust _ (EPair _ a1 b1)) (EJust _ (EPair _ a2 b2)) ->
    acted $ simplify' $ EJust ext (EPair ext (EPlus ext t1 a1 a2) (EPlus ext t2 b1 b2))
  EPlus _ STPair{} ENothing{} e -> acted $ simplify' e
  EPlus _ STPair{} e ENothing{} -> acted $ simplify' e

  EPlus _ (STEither t1 _) (EJust _ (EInl _ dt2 a1)) (EJust _ (EInl _ _ a2)) ->
    acted $ simplify' $ EJust ext (EInl ext dt2 (EPlus ext t1 a1 a2))
  EPlus _ (STEither _ t2) (EJust _ (EInr _ dt1 b1)) (EJust _ (EInr _ _ b2)) ->
    acted $ simplify' $ EJust ext (EInr ext dt1 (EPlus ext t2 b1 b2))
  EPlus _ STEither{} ENothing{} e -> acted $ simplify' e
  EPlus _ STEither{} e ENothing{} -> acted $ simplify' e

  EPlus _ (STMaybe t) (EJust _ e1) (EJust _ e2) ->
    acted $ simplify' $ EJust ext (EPlus ext t e1 e2)
  EPlus _ STMaybe{} ENothing{} e -> acted $ simplify' e
  EPlus _ STMaybe{} e ENothing{} -> acted $ simplify' e

  -- fallback recursion
  EVar _ t i -> pure $ EVar ext t i
  ELet _ a b -> ELet ext <$> simplify' a <*> simplify' b
  EPair _ a b -> EPair ext <$> simplify' a <*> simplify' b
  EFst _ e -> EFst ext <$> simplify' e
  ESnd _ e -> ESnd ext <$> simplify' e
  ENil _ -> pure $ ENil ext
  EInl _ t e -> EInl ext t <$> simplify' e
  EInr _ t e -> EInr ext t <$> simplify' e
  ECase _ e a b -> ECase ext <$> simplify' e <*> simplify' a <*> simplify' b
  ENothing _ t -> pure $ ENothing ext t
  EJust _ e -> EJust ext <$> simplify' e
  EMaybe _ a b e -> EMaybe ext <$> simplify' a <*> simplify' b <*> simplify' e
  EConstArr _ n t v -> pure $ EConstArr ext n t v
  EBuild _ n a b -> EBuild ext n <$> simplify' a <*> simplify' b
  EFold1Inner _ cm a b c -> EFold1Inner ext cm <$> simplify' a <*> simplify' b <*> simplify' c
  ESum1Inner _ e -> ESum1Inner ext <$> simplify' e
  EUnit _ e -> EUnit ext <$> simplify' e
  EReplicate1Inner _ a b -> EReplicate1Inner ext <$> simplify' a <*> simplify' b
  EMaximum1Inner _ e -> EMaximum1Inner ext <$> simplify' e
  EMinimum1Inner _ e -> EMinimum1Inner ext <$> simplify' e
  EConst _ t v -> pure $ EConst ext t v
  EIdx0 _ e -> EIdx0 ext <$> simplify' e
  EIdx1 _ a b -> EIdx1 ext <$> simplify' a <*> simplify' b
  EIdx _ a b -> EIdx ext <$> simplify' a <*> simplify' b
  EShape _ e -> EShape ext <$> simplify' e
  EOp _ op e -> EOp ext op <$> simplify' e
  ECustom _ s t p a b c e1 e2 ->
    ECustom ext s t p
      <$> (let ?accumInScope = False in simplify' a)
      <*> (let ?accumInScope = False in simplify' b)
      <*> (let ?accumInScope = False in simplify' c)
      <*> simplify' e1 <*> simplify' e2
  EWith _ t e1 e2 -> EWith ext t <$> simplify' e1 <*> (let ?accumInScope = True in simplify' e2)
  EZero _ t -> pure $ EZero ext t
  EPlus _ t a b -> EPlus ext t <$> simplify' a <*> simplify' b
  EError _ t s -> pure $ EError ext t s

acted :: (Any, a) -> (Any, a)
acted (_, x) = (Any True, x)

cheapExpr :: Expr x env t -> Bool
cheapExpr = \case
  EVar{} -> True
  ENil{} -> True
  EConst{} -> True
  EFst _ e -> cheapExpr e
  ESnd _ e -> cheapExpr e
  EUnit _ e -> cheapExpr e
  _ -> False

-- | This can be made more precise by tracking (and not counting) adds on
-- locally eliminated accumulators.
hasAdds :: Expr x env t -> Bool
hasAdds = \case
  EVar _ _ _ -> False
  ELet _ rhs body -> hasAdds rhs || hasAdds body
  EPair _ a b -> hasAdds a || hasAdds b
  EFst _ e -> hasAdds e
  ESnd _ e -> hasAdds e
  ENil _ -> False
  EInl _ _ e -> hasAdds e
  EInr _ _ e -> hasAdds e
  ECase _ e a b -> hasAdds e || hasAdds a || hasAdds b
  ENothing _ _ -> False
  EJust _ e -> hasAdds e
  EMaybe _ a b e -> hasAdds a || hasAdds b || hasAdds e
  EConstArr _ _ _ _ -> False
  EBuild _ _ a b -> hasAdds a || hasAdds b
  EFold1Inner _ _ a b c -> hasAdds a || hasAdds b || hasAdds c
  ESum1Inner _ e -> hasAdds e
  EUnit _ e -> hasAdds e
  EReplicate1Inner _ a b -> hasAdds a || hasAdds b
  EMaximum1Inner _ e -> hasAdds e
  EMinimum1Inner _ e -> hasAdds e
  ECustom _ _ _ _ a b c d e -> hasAdds a || hasAdds b || hasAdds c || hasAdds d || hasAdds e
  EConst _ _ _ -> False
  EIdx0 _ e -> hasAdds e
  EIdx1 _ a b -> hasAdds a || hasAdds b
  EIdx _ a b -> hasAdds a || hasAdds b
  EShape _ e -> hasAdds e
  EOp _ _ e -> hasAdds e
  EWith _ _ a b -> hasAdds a || hasAdds b
  EAccum _ _ _ _ _ _ -> True
  EZero _ _ -> False
  EPlus _ _ a b -> hasAdds a || hasAdds b
  EOneHot _ _ _ a b -> hasAdds a || hasAdds b
  EError _ _ _ -> False

checkAccumInScope :: SList STy env -> Bool
checkAccumInScope = \case SNil -> False
                          SCons t env -> check t || checkAccumInScope env
  where
    check :: STy t -> Bool
    check STNil = False
    check (STPair s t) = check s || check t
    check (STEither s t) = check s || check t
    check (STMaybe t) = check t
    check (STArr _ t) = check t
    check (STScal _) = False
    check STAccum{} = True

data OneHotTerm env p a b where
  OneHotTerm :: STy a -> SAcPrj p a b -> Ex env (AcIdx p a) -> Ex env (D2 b) -> OneHotTerm env p a b
deriving instance Show (OneHotTerm env p a b)

simplifyOneHotTerm :: OneHotTerm env p a b
                   -> (Any, r)  -- ^ Zero case (onehot is actually zero)
                   -> (Ex env (D2 a) -> (Any, r))  -- ^ Trivial case (no zeros in onehot)
                   -> (forall p' b'. OneHotTerm env p' a b' -> (Any, r))
                   -> (Any, r)
simplifyOneHotTerm (OneHotTerm _ _ _ (EZero _ _)) kzero _ _ = kzero

simplifyOneHotTerm (OneHotTerm t1 prj1 idx1 (EOneHot _ t2 prj2 idx2 val)) kzero ktriv k
  | Just Refl <- testEquality (acPrjTy prj1 t1) t2
  = do (Any True, ())  -- record, whatever happens later, that we've modified something
       concatOneHots t1 prj1 idx1 prj2 idx2 $ \prj12 idx12 ->
         simplifyOneHotTerm (OneHotTerm t1 prj12 idx12 val) kzero ktriv k

simplifyOneHotTerm (OneHotTerm t SAPHere idx e) kzero ktriv k = case (t, e) of
  (STNil, _) -> kzero

  (STPair{}, ENothing _ _) -> kzero
  (STPair{}, EJust _ (EPair _ e1 EZero{})) ->
    simplifyOneHotTerm (OneHotTerm t (SAPFst SAPHere) idx e1) kzero ktriv k
  (STPair{}, EJust _ (EPair _ EZero{} e2)) ->
    simplifyOneHotTerm (OneHotTerm t (SAPSnd SAPHere) idx e2) kzero ktriv k

  (STEither{}, ENothing _ _) -> kzero
  (STEither{}, EJust _ (EInl _ _ e1)) ->
    simplifyOneHotTerm (OneHotTerm t (SAPLeft SAPHere) idx e1) kzero ktriv k
  (STEither{}, EJust _ (EInr _ _ e2)) ->
    simplifyOneHotTerm (OneHotTerm t (SAPRight SAPHere) idx e2) kzero ktriv k

  (STMaybe{}, ENothing _ _) -> kzero
  (STMaybe{}, EJust _ e1) ->
    simplifyOneHotTerm (OneHotTerm t (SAPJust SAPHere) idx e1) kzero ktriv k

  (STArr{}, ENothing _ _) -> kzero

  (STScal STI32, _) -> kzero
  (STScal STI64, _) -> kzero
  (STScal STF32, EConst _ _ 0.0) -> kzero
  (STScal STF64, EConst _ _ 0.0) -> kzero
  (STScal STBool, _) -> kzero

  _ -> ktriv e

simplifyOneHotTerm term _ _ k = k term

concatOneHots :: STy a
              -> SAcPrj p1 a b -> Ex env (AcIdx p1 a)
              -> SAcPrj p2 b c -> Ex env (AcIdx p2 b)
              -> (forall p12. SAcPrj p12 a c -> Ex env (AcIdx p12 a) -> r) -> r
concatOneHots t1 prj1 idx1 prj2 idx2 k = case (t1, prj1) of
  (_, SAPHere) -> k prj2 idx2

  (STPair a _, SAPFst prj1') ->
    concatOneHots a prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPFst prj12) idx12
  (STPair _ b, SAPSnd prj1') ->
    concatOneHots b prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPSnd prj12) idx12

  (STEither a _, SAPLeft prj1') ->
    concatOneHots a prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPLeft prj12) idx12
  (STEither _ b, SAPRight prj1') ->
    concatOneHots b prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPRight prj12) idx12

  (STMaybe a, SAPJust prj1') ->
    concatOneHots a prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPJust prj12) idx12

  (STArr n a, SAPArrIdx prj1' _) ->
    concatOneHots a prj1' (ESnd ext (EVar ext (typeOf idx1) IZ)) prj2 (weakenExpr WSink idx2) $ \prj12 idx12 ->
      k (SAPArrIdx prj12 n) (ELet ext idx1 $ EPair ext (EFst ext (EVar ext (typeOf idx1) IZ)) idx12)