1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ImplicitParams #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
module Simplify (
simplifyN, simplifyFix,
SimplifyConfig(..), simplifyWith, simplifyFixWith,
) where
import Data.Function (fix)
import Data.Monoid (Any(..))
import Data.Type.Equality (testEquality)
import AST
import AST.Count
import Data
-- | This has no fields now, hence this type is useless as-is. When debugging, however, it's useful to be able to add some.
data SimplifyConfig = SimplifyConfig
defaultSimplifyConfig :: SimplifyConfig
defaultSimplifyConfig = SimplifyConfig
simplifyN :: KnownEnv env => Int -> Ex env t -> Ex env t
simplifyN 0 = id
simplifyN n = simplifyN (n - 1) . simplify
simplify :: forall env t. KnownEnv env => Ex env t -> Ex env t
simplify =
let ?accumInScope = checkAccumInScope @env knownEnv
?config = defaultSimplifyConfig
in snd . simplify'
simplifyWith :: forall env t. KnownEnv env => SimplifyConfig -> Ex env t -> Ex env t
simplifyWith config =
let ?accumInScope = checkAccumInScope @env knownEnv
?config = config
in snd . simplify'
simplifyFix :: forall env t. KnownEnv env => Ex env t -> Ex env t
simplifyFix = simplifyFixWith defaultSimplifyConfig
simplifyFixWith :: forall env t. KnownEnv env => SimplifyConfig -> Ex env t -> Ex env t
simplifyFixWith config =
let ?accumInScope = checkAccumInScope @env knownEnv
?config = config
in fix $ \loop e ->
let (Any act, e') = simplify' e
in if act then loop e' else e'
simplify' :: (?accumInScope :: Bool, ?config :: SimplifyConfig) => Ex env t -> (Any, Ex env t)
simplify' = \case
-- inlining
ELet _ rhs body
| cheapExpr rhs
-> acted $ simplify' (subst1 rhs body)
| Occ lexOcc runOcc <- occCount IZ body
, ((not ?accumInScope || not (hasAdds rhs)) && lexOcc <= One && runOcc <= One) -- without effects, normal rules apply
|| (lexOcc == One && runOcc == One) -- with effects, linear inlining is still allowed, but weakening is not
-> acted $ simplify' (subst1 rhs body)
-- let splitting
ELet _ (EPair _ a b) body ->
acted $ simplify' $
ELet ext a $
ELet ext (weakenExpr WSink b) $
subst (\_ t -> \case IZ -> EPair ext (EVar ext (typeOf a) (IS IZ)) (EVar ext (typeOf b) IZ)
IS i -> EVar ext t (IS (IS i)))
body
-- let rotation
ELet _ (ELet _ rhs a) b ->
acted $ simplify' $
ELet ext rhs $
ELet ext a $
weakenExpr (WCopy WSink) (snd (simplify' b))
-- beta rules for products
EFst _ (EPair _ e e')
| not (hasAdds e') -> acted $ simplify' e
| otherwise -> acted $ simplify' $ ELet ext e' (weakenExpr WSink e)
ESnd _ (EPair _ e' e)
| not (hasAdds e') -> acted $ simplify' e
| otherwise -> acted $ simplify' $ ELet ext e' (weakenExpr WSink e)
-- beta rules for coproducts
ECase _ (EInl _ _ e) rhs _ -> acted $ simplify' (ELet ext e rhs)
ECase _ (EInr _ _ e) _ rhs -> acted $ simplify' (ELet ext e rhs)
-- beta rules for maybe
EMaybe _ e1 _ ENothing{} -> acted $ simplify' e1
EMaybe _ _ e1 (EJust _ e2) -> acted $ simplify' $ ELet ext e2 e1
-- let floating to facilitate beta reduction
EFst _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (EFst ext body))
ESnd _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (ESnd ext body))
ECase _ (ELet _ rhs body) e1 e2 -> acted $ simplify' (ELet ext rhs (ECase ext body (weakenExpr (WCopy WSink) e1) (weakenExpr (WCopy WSink) e2)))
EIdx0 _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (EIdx0 ext body))
EIdx1 _ (ELet _ rhs body) e -> acted $ simplify' (ELet ext rhs (EIdx1 ext body (weakenExpr WSink e)))
-- projection down-commuting
EFst _ (ECase _ e1 e2 e3) ->
acted $ simplify' $
ECase ext e1 (EFst ext e2) (EFst ext e3)
ESnd _ (ECase _ e1 e2 e3) ->
acted $ simplify' $
ECase ext e1 (ESnd ext e2) (ESnd ext e3)
-- TODO: array indexing (index of build, index of fold)
-- TODO: beta rules for maybe
-- TODO: constant folding for operations
-- monoid rules
EAccum _ t1 prj1 idx1 (EOneHot _ t2 prj2 idx2 val) acc
| Just Refl <- testEquality (acPrjTy prj1 t1) t2
-> concatOneHots t1 prj1 idx1 prj2 idx2 $ \prj12 idx12 ->
acted $ simplify' (EAccum ext t1 prj12 idx12 val acc)
EAccum _ _ _ _ (EZero _ _) _ -> (Any True, ENil ext)
EPlus _ _ (EZero _ _) e -> acted $ simplify' e
EPlus _ _ e (EZero _ _) -> acted $ simplify' e
EOneHot _ t _ _ (EZero _ _) -> (Any True, EZero ext t)
EOneHot _ _ SAPHere _ e -> acted $ simplify' e
EOneHot _ t1 prj1 idx1 (EOneHot _ t2 prj2 idx2 val)
| Just Refl <- testEquality (acPrjTy prj1 t1) t2
-> concatOneHots t1 prj1 idx1 prj2 idx2 $ \prj12 idx12 ->
acted $ simplify' (EOneHot ext t1 prj12 idx12 val)
-- type-specific equations for plus
EPlus _ STNil _ _ -> (Any True, ENil ext)
EPlus _ (STPair t1 t2) (EJust _ (EPair _ a1 b1)) (EJust _ (EPair _ a2 b2)) ->
acted $ simplify' $ EJust ext (EPair ext (EPlus ext t1 a1 a2) (EPlus ext t2 b1 b2))
EPlus _ STPair{} ENothing{} e -> acted $ simplify' e
EPlus _ STPair{} e ENothing{} -> acted $ simplify' e
EPlus _ (STEither t1 _) (EJust _ (EInl _ dt2 a1)) (EJust _ (EInl _ _ a2)) ->
acted $ simplify' $ EJust ext (EInl ext dt2 (EPlus ext t1 a1 a2))
EPlus _ (STEither _ t2) (EJust _ (EInr _ dt1 b1)) (EJust _ (EInr _ _ b2)) ->
acted $ simplify' $ EJust ext (EInr ext dt1 (EPlus ext t2 b1 b2))
EPlus _ STEither{} ENothing{} e -> acted $ simplify' e
EPlus _ STEither{} e ENothing{} -> acted $ simplify' e
EPlus _ (STMaybe t) (EJust _ e1) (EJust _ e2) ->
acted $ simplify' $ EJust ext (EPlus ext t e1 e2)
EPlus _ STMaybe{} ENothing{} e -> acted $ simplify' e
EPlus _ STMaybe{} e ENothing{} -> acted $ simplify' e
-- fallback recursion
EVar _ t i -> pure $ EVar ext t i
ELet _ a b -> ELet ext <$> simplify' a <*> simplify' b
EPair _ a b -> EPair ext <$> simplify' a <*> simplify' b
EFst _ e -> EFst ext <$> simplify' e
ESnd _ e -> ESnd ext <$> simplify' e
ENil _ -> pure $ ENil ext
EInl _ t e -> EInl ext t <$> simplify' e
EInr _ t e -> EInr ext t <$> simplify' e
ECase _ e a b -> ECase ext <$> simplify' e <*> simplify' a <*> simplify' b
ENothing _ t -> pure $ ENothing ext t
EJust _ e -> EJust ext <$> simplify' e
EMaybe _ a b e -> EMaybe ext <$> simplify' a <*> simplify' b <*> simplify' e
EConstArr _ n t v -> pure $ EConstArr ext n t v
EBuild _ n a b -> EBuild ext n <$> simplify' a <*> simplify' b
EFold1Inner _ a b c -> EFold1Inner ext <$> simplify' a <*> simplify' b <*> simplify' c
ESum1Inner _ e -> ESum1Inner ext <$> simplify' e
EUnit _ e -> EUnit ext <$> simplify' e
EReplicate1Inner _ a b -> EReplicate1Inner ext <$> simplify' a <*> simplify' b
EMaximum1Inner _ e -> EMaximum1Inner ext <$> simplify' e
EMinimum1Inner _ e -> EMinimum1Inner ext <$> simplify' e
EConst _ t v -> pure $ EConst ext t v
EIdx0 _ e -> EIdx0 ext <$> simplify' e
EIdx1 _ a b -> EIdx1 ext <$> simplify' a <*> simplify' b
EIdx _ a b -> EIdx ext <$> simplify' a <*> simplify' b
EShape _ e -> EShape ext <$> simplify' e
EOp _ op e -> EOp ext op <$> simplify' e
ECustom _ s t p a b c e1 e2 ->
ECustom ext s t p
<$> (let ?accumInScope = False in simplify' a)
<*> (let ?accumInScope = False in simplify' b)
<*> (let ?accumInScope = False in simplify' c)
<*> simplify' e1 <*> simplify' e2
EWith _ t e1 e2 -> EWith ext t <$> simplify' e1 <*> (let ?accumInScope = True in simplify' e2)
EAccum _ t i e1 e2 e3 -> EAccum ext t i <$> simplify' e1 <*> simplify' e2 <*> simplify' e3
EZero _ t -> pure $ EZero ext t
EPlus _ t a b -> EPlus ext t <$> simplify' a <*> simplify' b
EOneHot _ t i a b -> EOneHot ext t i <$> simplify' a <*> simplify' b
EError _ t s -> pure $ EError ext t s
acted :: (Any, a) -> (Any, a)
acted (_, x) = (Any True, x)
cheapExpr :: Expr x env t -> Bool
cheapExpr = \case
EVar{} -> True
ENil{} -> True
EConst{} -> True
EFst _ e -> cheapExpr e
ESnd _ e -> cheapExpr e
_ -> False
-- | This can be made more precise by tracking (and not counting) adds on
-- locally eliminated accumulators.
hasAdds :: Expr x env t -> Bool
hasAdds = \case
EVar _ _ _ -> False
ELet _ rhs body -> hasAdds rhs || hasAdds body
EPair _ a b -> hasAdds a || hasAdds b
EFst _ e -> hasAdds e
ESnd _ e -> hasAdds e
ENil _ -> False
EInl _ _ e -> hasAdds e
EInr _ _ e -> hasAdds e
ECase _ e a b -> hasAdds e || hasAdds a || hasAdds b
ENothing _ _ -> False
EJust _ e -> hasAdds e
EMaybe _ a b e -> hasAdds a || hasAdds b || hasAdds e
EConstArr _ _ _ _ -> False
EBuild _ _ a b -> hasAdds a || hasAdds b
EFold1Inner _ a b c -> hasAdds a || hasAdds b || hasAdds c
ESum1Inner _ e -> hasAdds e
EUnit _ e -> hasAdds e
EReplicate1Inner _ a b -> hasAdds a || hasAdds b
EMaximum1Inner _ e -> hasAdds e
EMinimum1Inner _ e -> hasAdds e
ECustom _ _ _ _ a b c d e -> hasAdds a || hasAdds b || hasAdds c || hasAdds d || hasAdds e
EConst _ _ _ -> False
EIdx0 _ e -> hasAdds e
EIdx1 _ a b -> hasAdds a || hasAdds b
EIdx _ a b -> hasAdds a || hasAdds b
EShape _ e -> hasAdds e
EOp _ _ e -> hasAdds e
EWith _ _ a b -> hasAdds a || hasAdds b
EAccum _ _ _ _ _ _ -> True
EZero _ _ -> False
EPlus _ _ a b -> hasAdds a || hasAdds b
EOneHot _ _ _ a b -> hasAdds a || hasAdds b
EError _ _ _ -> False
checkAccumInScope :: SList STy env -> Bool
checkAccumInScope = \case SNil -> False
SCons t env -> check t || checkAccumInScope env
where
check :: STy t -> Bool
check STNil = False
check (STPair s t) = check s || check t
check (STEither s t) = check s || check t
check (STMaybe t) = check t
check (STArr _ t) = check t
check (STScal _) = False
check STAccum{} = True
concatOneHots :: STy a
-> SAcPrj p1 a b -> Ex env (AcIdx p1 a)
-> SAcPrj p2 b c -> Ex env (AcIdx p2 b)
-> (forall p12. SAcPrj p12 a c -> Ex env (AcIdx p12 a) -> r) -> r
concatOneHots t1 prj1 idx1 prj2 idx2 k = case (t1, prj1) of
(_, SAPHere) -> k prj2 idx2
(STPair a _, SAPFst prj1') ->
concatOneHots a prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPFst prj12) idx12
(STPair _ b, SAPSnd prj1') ->
concatOneHots b prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPSnd prj12) idx12
(STEither a _, SAPLeft prj1') ->
concatOneHots a prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPLeft prj12) idx12
(STEither _ b, SAPRight prj1') ->
concatOneHots b prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPRight prj12) idx12
(STMaybe a, SAPJust prj1') ->
concatOneHots a prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPJust prj12) idx12
(STArr n a, SAPArrIdx prj1' _) ->
concatOneHots a prj1' (ESnd ext (EVar ext (typeOf idx1) IZ)) prj2 (weakenExpr WSink idx2) $ \prj12 idx12 ->
k (SAPArrIdx prj12 n) (ELet ext idx1 $ EPair ext (EFst ext (EVar ext (typeOf idx1) IZ)) idx12)
|