1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeSynonymInstances #-}
module CC.Typecheck(runPass) where
import Control.Monad.State.Strict
import Control.Monad.Except
import qualified Data.Map.Strict as Map
import Data.Map.Strict (Map)
import Data.Maybe (fromMaybe, catMaybes)
import qualified Data.Set as Set
import Data.Set (Set)
import Debug.Trace
import qualified CC.AST.Source as S
import qualified CC.AST.Typed as T
import CC.Context
import CC.Types
import CC.Typecheck.Typedefs
import CC.Typecheck.Types
-- Inspiration: https://github.com/kritzcreek/fby19
data Env =
Env (Map Name T.TypeScheme) -- Definitions in scope
(Map Name T.TypeDef) -- Type definitions
(Map Name S.AliasDef) -- Type aliases
deriving (Show)
newtype Subst = Subst (Map Int T.Type)
class FreeTypeVars a where
-- Free instantiable type variables
freeInstTypeVars :: a -> Set Int
instance FreeTypeVars T.Type where
freeInstTypeVars (T.TFun t1 t2) = freeInstTypeVars t1 <> freeInstTypeVars t2
freeInstTypeVars T.TInt = mempty
freeInstTypeVars (T.TTup ts) = Set.unions (map freeInstTypeVars ts)
freeInstTypeVars (T.TNamed _ ts) = Set.unions (map freeInstTypeVars ts)
freeInstTypeVars (T.TUnion ts) = Set.unions (map freeInstTypeVars (Set.toList ts))
freeInstTypeVars (T.TyVar T.Instantiable var) = Set.singleton var
freeInstTypeVars (T.TyVar T.Rigid _) = mempty
instance FreeTypeVars T.TypeScheme where
freeInstTypeVars (T.TypeScheme bnds ty) =
foldr Set.delete (freeInstTypeVars ty) bnds
instance FreeTypeVars Env where
freeInstTypeVars (Env mp _ _) = foldMap freeInstTypeVars (Map.elems mp)
infixr >>!
class Substitute a where
(>>!) :: Subst -> a -> a
instance Substitute T.Type where
theta@(Subst mp) >>! ty = case ty of
T.TFun t1 t2 -> T.TFun (theta >>! t1) (theta >>! t2)
T.TInt -> T.TInt
T.TTup ts -> T.TTup (map (theta >>!) ts)
T.TNamed n ts -> T.TNamed n (map (theta >>!) ts)
T.TUnion ts -> T.TUnion (Set.map (theta >>!) ts)
T.TyVar T.Instantiable i -> fromMaybe ty (Map.lookup i mp)
T.TyVar T.Rigid i
| i `Map.member` mp -> error "Attempt to substitute a rigid type variable"
| otherwise -> ty
instance Substitute T.TypeScheme where
Subst mp >>! T.TypeScheme bnds ty =
T.TypeScheme bnds (Subst (foldr Map.delete mp bnds) >>! ty)
instance Substitute Env where
theta >>! Env mp tdefs aliases =
Env (Map.map (theta >>!) mp) tdefs aliases
-- TODO: make this instance unnecessary
instance Substitute T.Expr where
theta >>! T.Lam ty (T.Occ name ty2) body =
T.Lam (theta >>! ty) (T.Occ name (theta >>! ty2)) (theta >>! body)
theta >>! T.Let (T.Occ name ty) rhs body =
T.Let (T.Occ name (theta >>! ty)) (theta >>! rhs) (theta >>! body)
theta >>! T.Call ty e1 e2 =
T.Call (theta >>! ty) (theta >>! e1) (theta >>! e2)
_ >>! expr@(T.Int _) = expr
theta >>! T.Tup es = T.Tup (map (theta >>!) es)
theta >>! T.Var (T.Occ name ty) = T.Var (T.Occ name (theta >>! ty))
theta >>! T.Constr ty n = T.Constr (theta >>! ty) n
instance Semigroup Subst where
s2@(Subst m2) <> Subst m1 = Subst (Map.union (Map.map (s2 >>!) m1) m2)
instance Monoid Subst where
mempty = Subst mempty
emptyEnv :: Env
emptyEnv = Env mempty mempty mempty
envAddDef :: Name -> T.TypeScheme -> Env -> Env
envAddDef name sty (Env mp tmp aliases)
| name `Map.member` mp = error "envAddDef on name already in environment"
| otherwise =
Env (Map.insert name sty mp) tmp aliases
envFindDef :: Name -> Env -> Maybe T.TypeScheme
envFindDef name (Env mp _ _) = Map.lookup name mp
envAddTypes :: Map Name T.TypeDef -> Env -> Env
envAddTypes l (Env mp tdefs aliases) =
let combined = l <> tdefs
in if Map.size combined == Map.size l + Map.size tdefs
then Env mp combined aliases
else error "envAddTypes on duplicate type names"
envFindType :: Name -> Env -> Maybe T.TypeDef
envFindType name (Env _ tdefs _) = Map.lookup name tdefs
envAddAliases :: Map Name S.AliasDef -> Env -> Env
envAddAliases l (Env mp tdefs aliases) =
let combined = l <> aliases
in if Map.size combined == Map.size l + Map.size aliases
then Env mp tdefs combined
else error "envAddAliaes on duplicate type names"
envAliases :: Env -> Map Name S.AliasDef
envAliases (Env _ _ aliases) = aliases
substVar :: Int -> T.Type -> Subst
substVar var ty = Subst (Map.singleton var ty)
freshenScheme :: T.TypeScheme -> TM T.TypeScheme
freshenScheme (T.TypeScheme bnds ty) = do
vars <- traverse (const genId) bnds
let theta = Subst (Map.fromList (zip bnds (map (T.TyVar T.Instantiable) vars)))
return (T.TypeScheme vars (theta >>! ty))
generalise :: Env -> T.Type -> T.TypeScheme
generalise env ty =
T.TypeScheme (Set.toList (freeInstTypeVars ty Set.\\ freeInstTypeVars env)) ty
instantiate :: T.TypeScheme -> TM T.Type
instantiate scheme = (\(T.TypeScheme _ ty') -> ty') <$> freshenScheme scheme
replaceRigid :: T.Type -> T.Type
replaceRigid (T.TFun t1 t2) = T.TFun (replaceRigid t1) (replaceRigid t2)
replaceRigid T.TInt = T.TInt
replaceRigid (T.TTup ts) = T.TTup (map (replaceRigid) ts)
replaceRigid (T.TNamed n ts) = T.TNamed n (map replaceRigid ts)
replaceRigid (T.TUnion ts) = T.TUnion (Set.map replaceRigid ts)
replaceRigid (T.TyVar _ v) = T.TyVar T.Rigid v
checkType :: Env -> SourceRange -> T.Type -> TM ()
checkType env sr (T.TFun t1 t2) = checkType env sr t1 >> checkType env sr t2
checkType _ _ T.TInt = return ()
checkType env sr (T.TTup ts) = mapM_ (checkType env sr) ts
checkType env sr (T.TNamed n ts) = do
mapM_ (checkType env sr) ts
case envFindType n env of
Just (T.TypeDef _ args _)
| length ts == length args -> return ()
| otherwise -> throwError (TypeArityError sr n (length args) (length ts))
Nothing -> throwError (RefError sr n)
checkType env sr (T.TUnion ts) = mapM_ (checkType env sr) (Set.toList ts)
checkType _ _ (T.TyVar _ _) = return ()
data UnifyContext = UnifyContext SourceRange T.Type T.Type
-- t1 = got type: what did we infer using existing information
-- t2 = wanted type: what should the type equal due to an annotation or language usage
-- Unions are only weakened towards t2: {a} U {a,b} works, but {a,b} U {a} is an error.
unify :: SourceRange -> T.Type -> T.Type -> TM Subst
unify sr t1 t2 = unify' (UnifyContext sr t1 t2) t1 t2
unify' :: UnifyContext -> T.Type -> T.Type -> TM Subst
unify' _ T.TInt T.TInt = return mempty
unify' ctx (T.TFun t1 t2) (T.TFun u1 u2) =
-- This one is subtle: function arguments are contravariant, so we swap
-- unification direction here.
(<>) <$> unify' ctx t2 u2 <*> unify' ctx u1 t1
unify' ctx (T.TTup ts) (T.TTup us)
| length ts == length us = mconcat <$> zipWithM (unify' ctx) ts us
unify' _ (T.TyVar T.Instantiable var) ty = return (substVar var ty)
unify' _ ty (T.TyVar T.Instantiable var) = return (substVar var ty)
unify' ctx (T.TNamed n1 ts) (T.TNamed n2 us)
| n1 == n2, length ts == length us = mconcat <$> zipWithM (unify' ctx) ts us
unify' ctx (T.TUnion topts) (T.TUnion topus) =
-- TODO: this is quadratic in the right union size. I'm not sure whether
-- this is avoidable, but it can probably be improved by partitioning on
-- the name of TNamed's.
mconcat . snd <$> mapAccumLM (\us ty -> matchup ty us) topus (Set.toList topts)
where
-- If a match is found, returns the substitution and the rest of the RHS
-- types; else, throws an error
matchup :: T.Type -> Set T.Type -> TM (Set T.Type, Subst)
matchup ty ts = do
let splits = [(item, uncurry (<>) (Set.split item ts)) | item <- Set.toList ts]
results <- forM splits $ \(item, rest) ->
catchError ((Just . (rest,)) <$> unify' ctx ty item)
(const (return Nothing))
case catMaybes results of
[] -> let UnifyContext sr topt1 topt2 = ctx
in throwError (UnifyError sr topt1 topt2 ty (T.TUnion ts)
(Just URNotInUnion))
[result] -> return result
_ -> let UnifyContext sr topt1 topt2 = ctx
in throwError (UnifyError sr topt1 topt2 ty (T.TUnion ts)
(Just URAmbiguousWeakening))
unify' ctx ty (T.TUnion us) = unify' ctx (T.TUnion (Set.singleton ty)) (T.TUnion us)
unify' ctx (T.TUnion ts) ty
| Set.size ts == 0 = return mempty
| Set.size ts == 1 = unify' ctx (Set.findMin ts) ty
unify' (UnifyContext sr t1 t2) u1 u2 = throwError (UnifyError sr t1 t2 u1 u2 Nothing)
infer :: Env -> S.Expr -> TM (Subst, T.Expr)
infer env expr = case expr of
S.Lam _ [] body -> infer env body
S.Lam sr args@(_:_:_) body -> infer env (foldr (S.Lam sr . pure) body args)
S.Lam _ [(arg, _)] body -> do
argVar <- genTyVar
let augEnv = envAddDef arg (T.TypeScheme [] argVar) env
(theta, body') <- infer augEnv body
let argType = theta >>! argVar
return (theta, T.Lam (T.TFun argType (T.exprType body'))
(T.Occ arg argType) body')
S.Let _ (name, _) rhs body -> do
(theta1, rhs') <- infer env rhs
let varType = T.exprType rhs'
let augEnv = envAddDef name (T.TypeScheme [] varType) env
(theta2, body') <- infer augEnv body
return (theta2 <> theta1, T.Let (T.Occ name varType) rhs' body')
S.Call sr func arg -> do
(theta1, func') <- infer env func
(theta2, arg') <- infer (theta1 >>! env) arg
resVar <- genTyVar
theta3 <- unify sr (theta2 >>! T.exprType func')
(T.TFun (T.exprType arg') resVar)
return (theta3 <> theta2 <> theta1
,T.Call (theta3 >>! resVar)
((theta3 <> theta2) >>! func') -- TODO: quadratic complexity
(theta3 >>! arg')) -- TODO: quadratic complexity
S.Int _ val -> return (mempty, T.Int val)
S.Tup _ es -> fmap T.Tup <$> inferList env es
S.Var sr name
| Just sty <- envFindDef name env -> do
ty <- instantiate sty
return (mempty, T.Var (T.Occ name ty))
| otherwise ->
throwError (RefError sr name)
S.Constr sr name -> case envFindType name env of
Just (T.TypeDef typname params typ) -> do
T.TypeScheme params' typ' <- freshenScheme (T.TypeScheme params typ)
let restyp = T.TNamed typname (map (T.TyVar T.Instantiable) params')
return (mempty, T.Constr (T.TFun typ' restyp) name)
_ ->
throwError (RefError sr name)
S.Annot sr subex ty -> do
(theta1, subex') <- infer env subex
ty' <- convertType (envAliases env) sr ty
checkType env sr ty'
-- Make sure the type of the subexpression matches the type with rigid
-- variables, then make it instantiable variables instead for the rest
-- of the code.
void $ unify sr (T.exprType subex') (replaceRigid ty')
theta2 <- unify sr (T.exprType subex') ty'
return (theta2 <> theta1, theta2 >>! subex') -- TODO: quadratic complexity
inferList :: Env -> [S.Expr] -> TM (Subst, [T.Expr])
inferList _ [] = return (mempty, [])
inferList env (expr : exprs) = do
(theta, expr') <- infer env expr
(theta', res) <- inferList (theta >>! env) exprs
return (theta <> theta', expr' : res)
runPass :: Context -> S.Program -> Either TCError T.Program
runPass (Context _ (Builtins builtins _)) prog =
let env = Env (Map.map (generalise emptyEnv) builtins) mempty mempty
in runTM (typeCheck env prog)
typeCheck :: Env -> S.Program -> TM T.Program
typeCheck startEnv (S.Program decls) = do
traceM (show decls)
let aliasdefs = [(n, def)
| S.DeclAlias def@(S.AliasDef (n, _) _ _) <- decls]
env1 = envAddAliases (Map.fromList aliasdefs) startEnv
typedefs' <- checkTypedefs (envAliases env1) [def | S.DeclType def <- decls]
let typedefsMap = Map.fromList [(n, def) | def@(T.TypeDef n _ _) <- typedefs']
let funcdefs = [def | S.DeclFunc def <- decls]
typedfuncs <- sequence
[(name,) <$> convertType (envAliases env1) sr ty
| S.FuncDef (Just ty) (name, sr) _ _ <- funcdefs]
let env2 = envAddTypes typedefsMap env1
traceM (show typedefsMap)
let env = foldl (\env' (name, ty) ->
envAddDef name (generalise env' ty) env')
env2 typedfuncs
traceM (show env)
funcdefs' <- mapM (typeCheckFunc env) funcdefs
return (T.Program funcdefs' typedefsMap)
typeCheckFunc :: Env -> S.FuncDef -> TM T.Def
typeCheckFunc env (S.FuncDef mannot (name, sr) args@(_:_) body) =
typeCheckFunc env (S.FuncDef mannot (name, sr) [] (S.Lam sr args body))
typeCheckFunc env (S.FuncDef (Just annot) (name, sr) [] body) =
typeCheckFunc env (S.FuncDef Nothing (name, sr) [] (S.Annot sr body annot))
typeCheckFunc env (S.FuncDef Nothing (name, _) [] body) = do
(_, body') <- infer env body
return (T.Def name body')
mapAccumLM :: Monad m => (a -> b -> m (a, c)) -> a -> [b] -> m (a, [c])
mapAccumLM _ start [] = return (start, [])
mapAccumLM f start (x:xs) =
f start x >>= \(next, y) -> fmap (y :) <$> mapAccumLM f next xs
|