summaryrefslogtreecommitdiff
path: root/src/Data/Dependent/EnumMap/Strict/Internal.hs
blob: 6cc46a33e905a8d0e2fda48f15840b8422670085 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
module Data.Dependent.EnumMap.Strict.Internal where

import Control.Exception
import Data.Bifunctor (bimap)
import Data.Dependent.Sum
import qualified Data.IntMap.Strict as IM
import Data.Kind (Type)
import Data.Proxy
import Data.Some
import Data.Type.Equality
import Text.Show (showListWith)
import Unsafe.Coerce (unsafeCoerce)


data KV k v = forall a. KV !(Enum1Info k) !(v a)

newtype DEnumMap k v = DEnumMap (IM.IntMap (KV k v))

instance (Enum1 k, forall a. Show (k a), forall a. Show (v a))
      => Show (DEnumMap (k :: kind -> Type) (v :: kind -> Type)) where
  showsPrec d mp = showParen (d > 10) $
    showString "fromList " . showListWith (\(k :=> v) -> showsPrec 2 k . showString " :=> " . showsPrec 1 v) (toList mp)

-- | This class attempts to generalise 'Enum' to indexed data types: data types
-- with a GADT-like type parameter. Conversion to an 'Int' naturally loses type
-- information, and furthermore it is common to actually need some additional
-- data alongside the 'Int' to be able to reconstruct the original (in
-- 'toEnum1'). This additional data lives in 'Enum1Info'. The laws are:
--
-- [Unique IDs]
--   If @'fst' ('fromEnum1' x) == 'fst' ('fromEnum1' y)@ then @'testEquality' x y == 'Just' 'Refl' && x '==' y@
-- [Persistent IDs]
--   @'fst' ('fromEnum1' ('uncurry' 'toEnum1' ('fromEnum1' x))) == 'fst' ('fromEnum1' x)@
--
-- The "Unique IDs" law states that if the IDs of two values are equal, then
-- the values themselves must have the same type index, and furthermore be
-- equal. If @f@ does not implement 'TestEquality' or 'Eq', the law should
-- morally hold (but most of the API will be unusable).
--
-- The "Persistent IDs" law states that reconstructing a value using 'toEnum1'
-- does not change its ID.
--
-- __Note__: The methods on 'DEnumMap' attempt to check these laws using
-- 'assert' assertions (which are by default __disabled__ when optimisations
-- are on!), but full consistency cannot always be checked; if you break these
-- laws in a sufficiently clever way, the internals of 'DEnumMap' may
-- 'unsafeCoerce' unequal things and engage nasal demons, including crashes and
-- worse.
class Enum1 f where
  type Enum1Info f
  fromEnum1 :: f a -> (Int, Enum1Info f)
  toEnum1 :: Int -> Enum1Info f -> Some f

dSumToKV :: Enum1 k => DSum k v -> (Int, KV k v)
dSumToKV (k :=> v) = let (i, inf) = fromEnum1 k in (i, KV inf v)

-- | Assumes that the input was obtained via 'fromEnum1'.
kVToDSum :: Enum1 k => (Int, KV k v) -> DSum k v
kVToDSum (i, KV inf v) = case toEnum1 i inf of Some k -> k :=> coe1 v

-- * Construction

empty :: DEnumMap k v
empty = DEnumMap IM.empty

singleton :: Enum1 k => k a -> v a -> DEnumMap k v
singleton k v =
  let (i, inf) = fromEnum1 k
  in DEnumMap (IM.singleton i (KV inf v))

-- fromSet

-- ** From Unordered Lists

fromList :: Enum1 k => [DSum k v] -> DEnumMap k v
fromList l = DEnumMap (IM.fromList (map dSumToKV l))

fromListWith :: (Enum1 k, TestEquality k)
             => (forall a. v a -> v a -> v a)
             -> [DSum k v] -> DEnumMap k v
fromListWith f (l :: [DSum k v]) =
  DEnumMap (IM.fromListWithKey
             (\i (KV inf1 v1) (KV inf2 v2) ->
                typeCheck2 (Proxy @k) i inf1 inf2 $
                  KV inf1 (f v1 (coe1 v2)))
             (map dSumToKV l))

fromListWithKey :: (Enum1 k, TestEquality k)
                => (forall a. k a -> v a -> v a -> v a)
                -> [DSum k v] -> DEnumMap k v
fromListWithKey f l =
  DEnumMap (IM.fromListWithKey
             (\i (KV inf1 v1) (KV inf2 v2) ->
                case toEnum1 i inf1 of
                  Some k1 -> typeCheck1 k1 i inf2 $ KV inf1 (f k1 (coe1 v1) (coe1 v2)))
             (map dSumToKV l))

-- ** From Ascending Lists

fromAscList :: Enum1 k => [DSum k v] -> DEnumMap k v
fromAscList l = DEnumMap (IM.fromAscList (map dSumToKV l))

fromAscListWith :: (Enum1 k, TestEquality k)
                => (forall a. v a -> v a -> v a)
                -> [DSum k v] -> DEnumMap k v
fromAscListWith f (l :: [DSum k v]) =
  DEnumMap (IM.fromAscListWithKey
             (\i (KV inf1 v1) (KV inf2 v2) ->
               typeCheck2 (Proxy @k) i inf1 inf2 $
                 KV inf1 (f v1 (coe1 v2)))
             (map dSumToKV l))

fromAscListWithKey :: (Enum1 k, TestEquality k)
                   => (forall a. k a -> v a -> v a -> v a)
                   -> [DSum k v] -> DEnumMap k v
fromAscListWithKey f l =
  DEnumMap (IM.fromAscListWithKey
             (\i (KV inf1 v1) (KV inf2 v2) ->
               case toEnum1 i inf1 of
                 Some k1 -> typeCheck1 k1 i inf2 $ KV inf1 (f k1 (coe1 v1) (coe1 v2)))
             (map dSumToKV l))

fromDistinctAscList :: Enum1 k => [DSum k v] -> DEnumMap k v
fromDistinctAscList l = DEnumMap (IM.fromDistinctAscList (map dSumToKV l))

-- * Insertion

insert :: Enum1 k => k a -> v a -> DEnumMap k v -> DEnumMap k v
insert k v (DEnumMap m) =
  let (i, inf) = fromEnum1 k
  in DEnumMap (IM.insert i (KV inf v) m)

insertWith :: (Enum1 k, TestEquality k)
           => (v a -> v a -> v a)
           -> k a -> v a -> DEnumMap k v -> DEnumMap k v
insertWith = insertWithKey . const

insertWithKey :: (Enum1 k, TestEquality k)
              => (k a -> v a -> v a -> v a)
              -> k a -> v a -> DEnumMap k v -> DEnumMap k v
insertWithKey f k v (DEnumMap m) =
  let (i, inf) = fromEnum1 k
  in DEnumMap (IM.insertWith
                (\_ (KV inf' v2) -> typeCheck1 k i inf' $ KV inf (f k v (coe1 v2)))
                i (KV inf v) m)

-- insertLookupWithKey

-- * Deletion\/Update

delete :: Enum1 k => k a -> DEnumMap k v -> DEnumMap k v
delete k (DEnumMap m) = DEnumMap (IM.delete (fst (fromEnum1 k)) m)

adjust :: (Enum1 k, TestEquality k) => (v a -> v a) -> k a -> DEnumMap k v -> DEnumMap k v
adjust f k (DEnumMap m) =
  let (i, _) = fromEnum1 k
  in DEnumMap (IM.adjust (\(KV inf v) -> typeCheck1 k i inf $ KV inf (f (coe1 v))) i m)

-- adjustWithKey
-- update
-- updateWithKey
-- updateLookupWithKey

alter :: forall k v a. (Enum1 k, TestEquality k) => (Maybe (v a) -> Maybe (v a)) -> k a -> DEnumMap k v -> DEnumMap k v
alter f k (DEnumMap m) = DEnumMap (IM.alter f' i m)
  where
    (i, inf) = fromEnum1 k

    f' :: Maybe (KV k v) -> Maybe (KV k v)
    f' Nothing = KV inf <$> f Nothing
    f' (Just (KV inf' v)) = typeCheck1 k i inf' $ KV inf <$> f (Just (coe1 v))

-- alterF

-- * Query
-- ** Lookup

lookup :: (Enum1 k, TestEquality k) => k a -> DEnumMap k v -> Maybe (v a)
lookup k (DEnumMap m) =
  let (i, _) = fromEnum1 k
  in (\(KV inf v) -> typeCheck1 k i inf $ coe1 v) <$> IM.lookup i m

-- (!?)
-- (!)

findWithDefault :: (Enum1 k, TestEquality k) => v a -> k a -> DEnumMap k v -> v a
findWithDefault def k (DEnumMap m) =
  let (i, _) = fromEnum1 k
  in case IM.findWithDefault (KV undefined def) i m of
       KV inf' v -> typeCheck1 k i inf' $ coe1 v

member :: Enum1 k => k a -> DEnumMap k v -> Bool
member k (DEnumMap m) = IM.member (fst (fromEnum1 k)) m

-- notMember
-- lookupLT
-- lookupGT
-- lookupLE
-- lookupGE

-- ** Size

null :: DEnumMap k v -> Bool
null (DEnumMap m) = IM.null m

size :: DEnumMap k v -> Int
size (DEnumMap m) = IM.size m

-- * Combine

-- ** Union

union :: (Enum1 k, TestEquality k) => DEnumMap k v -> DEnumMap k v -> DEnumMap k v
union = unionWith const  -- if we're type checking, we need unionWith anyway, so might as well just delegate here already

unionWith :: (Enum1 k, TestEquality k)
          => (forall a. v a -> v a -> v a) -> DEnumMap k v -> DEnumMap k v -> DEnumMap k v
unionWith f (DEnumMap m1 :: DEnumMap k v) (DEnumMap m2) = DEnumMap (IM.unionWithKey f' m1 m2)
  where
    f' :: Int -> KV k v -> KV k v -> KV k v
    f' i (KV inf1 v1) (KV inf2 v2) = typeCheck2 (Proxy @k) i inf1 inf2 $ KV inf1 (f v1 (coe1 v2))

-- unionWithKey
-- unions
-- unionsWith

-- ** Difference

difference :: DEnumMap k v -> DEnumMap k v -> DEnumMap k v
difference (DEnumMap m1) (DEnumMap m2) = DEnumMap (IM.difference m1 m2)

-- (\\)
-- differenceWith
-- differenceWithKey

-- ** Intersection

-- intersection
-- intersectionWith
-- intersectionWithKey

-- ** Disjoint

-- disjoint

-- ** Compose

-- compose

-- ** Universal combining function

-- mergeWithKey

-- * Traversal
-- ** Map

-- map
-- mapWithKey
-- traverseWithKey
-- traverseMaybeWithKey
-- mapAccum
-- mapAccumWithKey
-- mapAccumRWithKey
-- mapKeys
-- mapKeysWith
-- mapKeysMonotonic

-- * Folds

-- foldr
-- foldl
-- foldrWithKey
-- foldlWithKey
-- foldMapWithKey

-- ** Strict folds

-- foldr'
-- foldl'
-- foldrWithKey'
-- foldlWithKey'

-- * Conversion

elems :: DEnumMap k v -> [Some v]
elems (DEnumMap m) = map (\(KV _ v) -> Some v) (IM.elems m)

keys :: Enum1 k => DEnumMap k v -> [Some k]
keys (DEnumMap m) = map (\(k, KV inf _) -> toEnum1 k inf) (IM.assocs m)

-- assocs
-- keysSet

-- ** Lists

toList :: Enum1 k => DEnumMap k v -> [DSum k v]
toList = toAscList

-- ** Ordered lists

toAscList :: Enum1 k => DEnumMap k v -> [DSum k v]
toAscList (DEnumMap m) = map kVToDSum (IM.toAscList m)

toDescList :: Enum1 k => DEnumMap k v -> [DSum k v]
toDescList (DEnumMap m) = map kVToDSum (IM.toDescList m)

-- * Filter

-- filter
-- filterWithKey
-- restrictKeys
-- withoutKeys

partition :: (forall a. v a -> Bool) -> DEnumMap k v -> (DEnumMap k v, DEnumMap k v)
partition f (DEnumMap m) =
  bimap DEnumMap DEnumMap (IM.partition (\(KV _ v) -> f v) m)

partitionWithKey :: Enum1 k => (forall a. k a -> v a -> Bool) -> DEnumMap k v -> (DEnumMap k v, DEnumMap k v)
partitionWithKey f (DEnumMap m) =
  bimap DEnumMap DEnumMap (IM.partitionWithKey (\i (KV inf v) -> case toEnum1 i inf of Some k -> f k (coe1 v)) m)

-- takeWhileAntitone
-- dropWhileAntitone
-- spanAntitone

-- mapMaybe
-- mapMaybeWithKey
-- mapEither
-- mapEitherWithKey

-- split
-- splitLookup
-- splitRoot

-- * Submap

-- isSubmapOf, isSubmapOfBy
-- isProperSubmapOf, isProperSubmapOfBy

-- * Min\/Max

-- lookupMin
-- lookupMax
-- findMin
-- findMax
-- deleteMin
-- deleteMax
-- deleteFindMin
-- deleteFindMax
-- updateMin
-- updateMax
-- updateMinWithKey
-- updateMaxWithKey
-- minView
-- maxView
-- minViewWithKey

maxViewWithKey :: Enum1 k => DEnumMap k v -> Maybe (DSum k v, DEnumMap k v)
maxViewWithKey (DEnumMap m) = bimap kVToDSum DEnumMap <$> IM.maxViewWithKey m


-- * Helpers

coe1 :: v a -> v b
coe1 = unsafeCoerce

typeCheck1 :: (Enum1 k, TestEquality k)
           => k a -> Int -> Enum1Info k -> r -> r
typeCheck1 k1 i inf2 x =
  assert (case toEnum1 i inf2 of { Some k2 ->
          case testEquality k1 k2 of
            Just Refl -> True
            Nothing -> False })
         x

typeCheck2 :: forall k proxy r. (Enum1 k, TestEquality k)
           => proxy k -> Int -> Enum1Info k -> Enum1Info k -> r -> r
typeCheck2 _ i inf1 inf2 x =
  assert (case toEnum1 @k i inf1 of { Some k1 ->
          case toEnum1 i inf2 of { Some k2 ->
          case testEquality k1 k2 of
            Just Refl -> True
            Nothing -> False }})
         x