aboutsummaryrefslogtreecommitdiff
path: root/Simplify.hs
blob: 9ceaef9de58b2ab92efe4b8d7dc3ce5b95f7f8aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
module Simplify (
    simplify,
    simplifyFix,
) where

import Data.Bifunctor
import Data.GADT.Compare
import qualified Data.Kind as Kind
import Data.List (find)
import Data.Type.Equality

import AST
import Sink


data family Info (env :: [Kind.Type]) a
-- data instance Info env Int = InfoInt
-- data instance Info env Bool = InfoBool
-- data instance Info env Double = InfoDouble
data instance Info env (Array sh t) = InfoArray (Exp env sh)
-- data instance Info env () = InfoNil
data instance Info env (a, b) = InfoPair (Info env a) (Info env b)
-- data instance Info env (a -> b) = InfoFun

data IEnv env where
    ITop :: IEnv env
    ICons :: Type a -> Maybe (Info (a ': env) a) -> IEnv env -> IEnv (a ': env)

sinkInfo1 :: Type a -> Info env a -> Info (t ': env) a
sinkInfo1 TArray{} (InfoArray e) = InfoArray (sinkExp1 e)
sinkInfo1 (TPair t1 t2) (InfoPair a b) = InfoPair (sinkInfo1 t1 a) (sinkInfo1 t2 b)
sinkInfo1 _ _ = error "Unknown info in sinkInfo1"

iprj :: IEnv env -> Idx env a -> Maybe (Type a, Info env a)
iprj ITop _ = Nothing
iprj (ICons t m _) Zero = (t,) <$> m
iprj (ICons _ _ env) (Succ i) = (\(t, m) -> (t, sinkInfo1 t m)) <$> iprj env i

simplifyFix :: Exp env a -> Exp env a
simplifyFix e =
    let maxTimes = 4
        es = take (maxTimes + 1) (iterate simplify e)
        pairs = zip es (tail es)
    in case find (\(a,b) -> case geq a b of Just Refl -> True ; _ -> False) pairs of
         Just (e', _) -> e'
         Nothing -> error "Simplification doesn't converge!"

simplify :: Exp env a -> Exp env a
simplify = fst . simplify' ITop

simplify' :: IEnv env -> Exp env a -> (Exp env a, Maybe (Info env a))
simplify' env = \case
    App a b -> (simplifyApp (fst (simplify' env a)) (fst (simplify' env b)), Nothing)
    Lam t e -> (Lam t (fst (simplify' (ICons t Nothing env) e)), Nothing)
    Var t i -> (Var t i, snd <$> iprj env i)
    Let arg e ->
        let (arg', info) = simplify' env arg
            env' = ICons (typeof arg) (sinkInfo1 (typeof arg) <$> info) env
        in (simplifyLet arg' (fst (simplify' env' e)), Nothing)
    Lit l -> (Lit l, Nothing)
    Cond a b c ->
        (Cond (fst (simplify' env a)) (fst (simplify' env b)) (fst (simplify' env c)), Nothing)
    Const c -> (Const c, Nothing)
    Pair a b ->
        let (a', ia) = simplify' env a
            (b', ib) = simplify' env b
        in (Pair a' b', InfoPair <$> ia <*> ib)
    Fst e -> bimap simplifyFst (fmap (\(InfoPair i _) -> i)) (simplify' env e)
    Snd e -> bimap simplifySnd (fmap (\(InfoPair _ i) -> i)) (simplify' env e)
    Build sht a b ->
        let a' = fst (simplify' env a)
        in (Build sht a' (fst (simplify' env b)), Just (InfoArray a'))
    Ifold sht a b c -> (Ifold sht (fst (simplify' env a)) (fst (simplify' env b)) (fst (simplify' env c)), Nothing)
    Index a b -> (simplifyIndex (fst (simplify' env a)) (fst (simplify' env b)), Nothing)
    Shape e ->
        case simplify' env e of
          (_, Just (InfoArray she)) -> (she, Nothing)
          (e', _) -> (Shape e', Nothing)

simplifyApp :: Exp env (a -> b) -> Exp env a -> Exp env b
simplifyApp (Const CAddI) (Pair (Lit (LInt a)) (Lit (LInt b))) = Lit (LInt (a + b))
simplifyApp (Const CSubI) (Pair (Lit (LInt a)) (Lit (LInt b))) = Lit (LInt (a - b))
simplifyApp (Const CMulI) (Pair (Lit (LInt a)) (Lit (LInt b))) = Lit (LInt (a * b))
simplifyApp (Const CDivI) (Pair (Lit (LInt a)) (Lit (LInt b))) = Lit (LInt (a `div` b))
simplifyApp (Const CAddF) (Pair (Lit (LDouble a)) (Lit (LDouble b))) = Lit (LDouble (a + b))
simplifyApp (Const CSubF) (Pair (Lit (LDouble a)) (Lit (LDouble b))) = Lit (LDouble (a - b))
simplifyApp (Const CMulF) (Pair (Lit (LDouble a)) (Lit (LDouble b))) = Lit (LDouble (a * b))
simplifyApp (Const CDivF) (Pair (Lit (LDouble a)) (Lit (LDouble b))) = Lit (LDouble (a / b))
simplifyApp (Const CLog) (Lit (LDouble a)) = Lit (LDouble (log a))
simplifyApp (Const CExp) (Lit (LDouble a)) = Lit (LDouble (exp a))
simplifyApp (Const CtoF) (Lit (LInt a)) = Lit (LDouble (fromIntegral a))
simplifyApp (Const CRound) (Lit (LDouble a)) = Lit (LInt (round a))
simplifyApp (Const CLtI) (Pair (Lit (LInt a)) (Lit (LInt b))) = Lit (LBool (a < b))
simplifyApp (Const CLtF) (Pair (Lit (LDouble a)) (Lit (LDouble b))) = Lit (LBool (a < b))
simplifyApp (Const (CEq _)) (Pair a b)
  | Just Refl <- geq a b
  = Lit (LBool True)
simplifyApp (Const CAnd) (Pair (Lit (LBool a)) (Lit (LBool b))) = Lit (LBool (a && b))
simplifyApp (Const COr) (Pair (Lit (LBool a)) (Lit (LBool b))) = Lit (LBool (a || b))
simplifyApp (Const CNot) (Lit (LBool a)) = Lit (LBool (not a))

simplifyApp (Lam _ e) arg
  | isDuplicable arg || countOcc Zero e <= 1
  = simplify (subst arg e)
simplifyApp (Lam _ e) arg = simplifyLet arg e

simplifyApp a b = App a b

simplifyLet :: Exp env a -> Exp (a ': env) b -> Exp env b
simplifyLet arg e
  | isDuplicable arg || countOcc Zero e <= 1
  = simplify (subst arg e)
simplifyLet (Pair a b) e =
    simplifyLet a $
        simplifyLet (sinkExp1 b) $
            subst' (\t -> \case Zero -> Pair (Var (typeof a) (Succ Zero))
                                             (Var (typeof b) Zero)
                                Succ i -> Var t (Succ (Succ i)))
                   e
simplifyLet (Cond c a b) e
  | isDuplicable a && isDuplicable b
  = simplifyLet c $
      (subst' (\t -> \case Zero -> Cond (Var TBool Zero) (sinkExp1 a) (sinkExp1 b)
                           Succ i -> Var t (Succ i))
              e)
simplifyLet a b = Let (simplify a) (simplify b)

simplifyFst :: Exp env (a, b) -> Exp env a
simplifyFst (Pair e _) = e
simplifyFst (Let a e) = simplifyLet a (simplifyFst e)
simplifyFst e = Fst e

simplifySnd :: Exp env (a, b) -> Exp env b
simplifySnd (Pair _ e) = e
simplifySnd (Let a e) = simplifyLet a (simplifySnd e)
simplifySnd e = Snd e

simplifyIndex :: Exp env (Array sh a) -> Exp env sh -> Exp env a
simplifyIndex (Build _ _ f) e = simplifyApp f e
simplifyIndex a e = Index a e

isDuplicable :: Exp env a -> Bool
isDuplicable (Lam _ e) = isDuplicable e
isDuplicable (Var _ _) = True
isDuplicable (Let a e) = isDuplicable a && isDuplicable e
isDuplicable (Lit (LInt _)) = True
isDuplicable (Lit (LBool _)) = True
isDuplicable (Lit (LDouble _)) = True
isDuplicable (Lit (LShape _)) = True
isDuplicable (Lit LNil) = True
isDuplicable (Lit (LPair l1 l2)) = isDuplicable (Lit l1) && isDuplicable (Lit l2)
isDuplicable (Const _) = True
isDuplicable (Pair a b) = isDuplicable a && isDuplicable b
isDuplicable (Fst e) = isDuplicable e
isDuplicable (Snd e) = isDuplicable e
isDuplicable _ = False

countOcc :: Idx env t -> Exp env a -> Int
countOcc i (App a b) = countOcc i a + countOcc i b
countOcc i (Lam _ e) = countOcc (Succ i) e
countOcc i (Var _ j)
  | Just Refl <- geq i j = 1
  | otherwise = 0
countOcc i (Let a b) = countOcc i a + countOcc (Succ i) b
countOcc _ (Lit _) = 0
countOcc i (Cond a b c) = countOcc i a + countOcc i b + countOcc i c
countOcc _ (Const _) = 0
countOcc i (Pair a b) = countOcc i a + countOcc i b
countOcc i (Fst e) = countOcc i e
countOcc i (Snd e) = countOcc i e
countOcc i (Build _ a b) = countOcc i a + countOcc i b
countOcc i (Ifold _ a b c) = countOcc i a + countOcc i b + countOcc i c
countOcc i (Index a b) = countOcc i a + countOcc i b
countOcc i (Shape e) = countOcc i e

subst :: Exp env t -> Exp (t ': env) a -> Exp env a
subst arg e = subst' (\t -> \case Zero -> arg ; Succ i -> Var t i) e

subst' :: (forall t. Type t -> Idx env t -> Exp env' t) -> Exp env a -> Exp env' a
subst' f (App a b) = App (subst' f a) (subst' f b)
subst' f (Lam t e) =
    Lam t (subst' (\t' -> \case Zero -> Var t' Zero ; Succ i -> sinkExp1 (f t' i)) e)
subst' f (Var t i) = f t i
subst' f (Let a b) =
    Let (subst' f a)
        (subst' (\t -> \case Zero -> Var t Zero ; Succ i -> sinkExp1 (f t i)) b)
subst' _ (Lit l) = Lit l
subst' f (Cond a b c) = Cond (subst' f a) (subst' f b) (subst' f c)
subst' _ (Const c) = Const c
subst' f (Pair a b) = Pair (subst' f a) (subst' f b)
subst' f (Fst e) = Fst (subst' f e)
subst' f (Snd e) = Snd (subst' f e)
subst' f (Build sht a b) = Build sht (subst' f a) (subst' f b)
subst' f (Ifold sht a b c) = Ifold sht (subst' f a) (subst' f b) (subst' f c)
subst' f (Index a b) = Index (subst' f a) (subst' f b)
subst' f (Shape e) = Shape (subst' f e)