summaryrefslogtreecommitdiff
path: root/main.cpp
blob: 1db9b62dc1d2c3cd3731b234f4aa800f3b2d1014 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#include <iostream>
#include <memory>
#include <vector>
#include <unordered_map>
#include <variant>
#include <stdexcept>
#include <functional>
#include <cassert>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/XKBlib.h>


class X_keycode {
public:
	X_keycode() : code{0} {}
	X_keycode(unsigned int code) : code{code} {}
	explicit operator unsigned int() const { return code; }
	bool operator==(X_keycode other) const { return code == other.code; }
private: unsigned int code;
};

template <>
struct std::hash<X_keycode> {
	size_t operator()(X_keycode code) const {
		return std::hash<unsigned int>{}((unsigned int)code);
	}
};

class X_keysym {
public:
	X_keysym() : sym{0} {}
	X_keysym(unsigned int sym) : sym{sym} {}
	explicit operator unsigned int() const { return sym; }
	X_keycode toCode(Display *dpy) const { return XKeysymToKeycode(dpy, sym); }
	bool operator==(X_keysym other) const { return sym == other.sym; }
private: unsigned int sym;
};

template <>
struct std::hash<X_keysym> {
	size_t operator()(X_keysym sym) const {
		return std::hash<unsigned int>{}((unsigned int)sym);
	}
};

void bel(Display *dpy) {
	XkbBell(dpy, None, 100, None);
}

template <typename Cleanup>
class UponExit {
public:
	UponExit(Cleanup cleanup) : cleanup{cleanup} {}
	~UponExit() {
		if (cleanup) (*cleanup)();
	}
	UponExit(const UponExit&) = delete;
	UponExit(UponExit &&other) : cleanup{move(other.cleanup)} {
		other.cleanup.reset();
	}
	UponExit& operator=(const UponExit&) = delete;
	UponExit& operator=(UponExit &&other) {
		cleanup = move(other.cleanup);
		other.cleanup.reset();
	}

private:
	std::optional<Cleanup> cleanup;
};

auto XGrabKeyRAII(Display *dpy, X_keycode code, int modifier, Window win) {
	XGrabKey(dpy, (unsigned int)code, modifier, win, False, GrabModeAsync, GrabModeAsync);
	return UponExit{[dpy, code, modifier, win]() {
		XUngrabKey(dpy, (unsigned int)code, modifier, win);
	}};
}

auto XGrabKeyboardRAII(Display *dpy, Window win) {
	int ret = XGrabKeyboard(dpy, win, False, GrabModeAsync, GrabModeAsync, CurrentTime);
	if (ret == AlreadyGrabbed) {
		XUngrabKeyboard(dpy, CurrentTime);
		throw std::runtime_error("Cannot grab keyboard: already grabbed");
	}
	return UponExit{[dpy]() {
		XUngrabKeyboard(dpy, CurrentTime);
	}};
}

auto XOpenDisplayRAII(const char *name) {
	Display *dpy = XOpenDisplay(name);
	if (dpy == nullptr) {
		std::cerr << "Cannot open X display" << std::endl;
		exit(1);
	}
	return std::make_pair(dpy, UponExit{[dpy]() {
		XCloseDisplay(dpy);
	}});
}

template <typename F>  // return true to stop watch and loop
void globalKeyWatch(Display *dpy, X_keysym headerSym, F callback) {
	const Window root = DefaultRootWindow(dpy);
	const X_keycode headerCode = headerSym.toCode(dpy);

	auto guard = XGrabKeyRAII(dpy, headerCode, AnyModifier, root);

	XSelectInput(dpy, root, KeyPressMask);
	while (true) {
		XEvent ev;
		XNextEvent(dpy, &ev);
		if (ev.type == KeyPress && ev.xkey.keycode == (unsigned int)headerCode) {
			if (callback(ev.xkey)) return;
		}
	}
}

template <typename F>  // return true to lose grab and loop
void globalKeyboardGrab(Display *dpy, F callback) {
	const Window root = DefaultRootWindow(dpy);

	try {
		auto guard = XGrabKeyboardRAII(dpy, root);

		while (true) {
			XEvent ev;
			XNextEvent(dpy, &ev);
			if (ev.type == KeyPress) {
				if (callback(ev.xkey)) return;
			}
		}
	} catch (std::exception &e) {
		std::cerr << e.what() << std::endl;
	}
}

class SeqMatcher {
public:
	using Callback = std::function<void()>;

	struct SymSequence {
		std::vector<X_keysym> syms;
		Callback callback;
	};

	SeqMatcher(Display *dpy) : dpy{dpy} {}

	SeqMatcher(Display *dpy, std::vector<SymSequence> seqs)
			: dpy{dpy} {
		for (const auto &seq : seqs) addSequence(seq.syms, seq.callback);
	}

	void addSequence(const std::vector<X_keysym> &syms, Callback callback) {
		if (syms.empty()) {
			throw std::logic_error("Cannot register empty key sequence");
		}

		Node *current = &rootNode;
		for (X_keysym sym : syms) {
			if (std::holds_alternative<Callback>(current->v)) {
				throw std::logic_error("Overlapping key sequences (second is longer)");
			} else {
				if (!std::holds_alternative<NodeMap>(current->v)) {
					current->v.emplace<NodeMap>();
				}
				NodeMap &map = std::get<NodeMap>(current->v);
				X_keycode code = sym.toCode(dpy);
				auto it = map.find(code);
				if (it != map.end()) {
					current = it->second.get();
				} else {
					current = map.emplace(sym.toCode(dpy), std::make_unique<Node>()).first->second.get();
				}
			}
		}

		if (auto *map = std::get_if<NodeMap>(&current->v)) {
			if (!map->empty()) {
				throw std::logic_error("Overlapping key sequences (second is shorter)");
			}
		}
		if (std::holds_alternative<Callback>(current->v)) {
			throw std::logic_error("Overlapping key sequences (equally long)");
		}
		current->v.emplace<Callback>(callback);
	}

	// Returns a sequence was completed, either successfully or erroneously.
	// Needs more events to complete a sequence iff it returns false.
	bool observe(const XKeyEvent &ev) {
		auto *map = std::get_if<NodeMap>(&curNode->v);
		assert(map);

		auto it = map->find(X_keycode{ev.keycode});
		if (it == map->end()) {
			// Sequence not found
			bel(dpy);
			reset();
			return true;
		}

		curNode = it->second.get();

		if (auto *cb = std::get_if<Callback>(&curNode->v)) {
			(*cb)();
			reset();
			return true;
		}

		// Need more keys
		return false;
	}

	void reset() {
		curNode = &rootNode;
	}

private:
	struct Node;
	using NodeMap = std::unordered_map<X_keycode, std::unique_ptr<Node>>;
	struct Node {
		std::variant<NodeMap, Callback> v;
	};

	Display *const dpy;
	Node rootNode;
	Node *curNode = &rootNode;
};

int main() {
	auto dpy_pair = XOpenDisplayRAII(nullptr);
	Display *dpy = dpy_pair.first;

	bool quitRequested = false;

	SeqMatcher matcher{dpy};
	matcher.addSequence({XK_A, XK_B}, []() {
		std::cout << "key ab" << std::endl;
	});
	matcher.addSequence({XK_B}, []() {
		std::cout << "key b" << std::endl;
	});
	matcher.addSequence({XK_Q}, [&quitRequested]() {
		quitRequested = true;
	});

	globalKeyWatch(
		dpy, XK_Break,
		[dpy, &matcher, &quitRequested](const XKeyEvent&) -> bool {
			matcher.reset();
			globalKeyboardGrab(dpy, [&matcher](const XKeyEvent &ev) -> bool {
				return matcher.observe(ev);
			});
			return quitRequested;
		}
	);
}