aboutsummaryrefslogtreecommitdiff
path: root/CodeGen.hs
blob: 905bee57a4cb5de8ea3e97a87c67e9a4f9de0678 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
{-# LANGUAGE DeriveFunctor, GeneralizedNewtypeDeriving, TupleSections, QuasiQuotes, ScopedTypeVariables #-}

module CodeGen(codegen) where

import Control.Monad
import Control.Monad.Except
import Control.Monad.State.Strict
import Data.List
import Data.Maybe
import Data.Map.Strict ((!))
import qualified Data.Map.Strict as Map
import Debug.Trace

import AST
import Defs
import Intermediate
import qualified LifetimeAnalysis as LA
import RegAlloc
import Utils
import X64 (Register(..), CondCode(..), XRef(..), Ins(..), xref)
import qualified X64 as X64
import X64Optimiser


data CGState = CGState
    { nextId :: Int,
      regsToRestore :: [Register],
      spillSize :: Size,
      x64Result :: X64.Asm }

newtype CGMonad a = CGMonad { unCGMonad :: StateT CGState (Except String) a }
  deriving (Functor, Applicative, Monad, MonadState CGState, MonadError String)

initState :: CGState
initState = CGState {nextId = 1, regsToRestore = [], spillSize = 0, x64Result = X64.Asm []}

execCGMonad :: CGMonad a -> Error X64.Asm
execCGMonad = fmap x64Result . runExcept . flip execStateT initState . unCGMonad

addIns :: X64.Ins -> CGMonad ()
addIns ins = modify $ \s ->
    let (X64.Asm funcs) = x64Result s
        (pre, (lab, inss)) = (init funcs, last funcs)
    in s {x64Result = X64.Asm $ pre ++ [(lab, inss ++ [ins])]}

newLabel :: String -> CGMonad ()
newLabel lab = modify $ \s ->
    let (X64.Asm funcs) = x64Result s
    in s {x64Result = X64.Asm $ funcs ++ [(lab, [])]}

-- genId :: CGMonad Int
-- genId = state $ \s -> (nextId s, s {nextId = nextId s + 1})

setRegsToRestore :: [Register] -> CGMonad ()
setRegsToRestore regs = modify $ \s -> s {regsToRestore = regs}

setSpillSize :: Size -> CGMonad ()
setSpillSize sz = modify $ \s -> s {spillSize = sz}


codegen :: IRProgram -> Error String
codegen (IRProgram vars funcs) = do
    x64 <- execCGMonad $ mapM_ codegenFunc funcs
    -- traceShowM x64
    X64.verify x64
    varcg <- liftM unlines $ mapM codegenVar vars
    x64opt <- x64Optimise x64
    return $ "extern putc, putint, getc, _builtin_malloc\n" ++
             "global main\ndefault rel\nsection .text\n" ++
             X64.stringify x64opt ++
             "\nsection .data\n" ++ varcg


codegenVar :: DVar -> Error String
codegenVar (DVar TInt n (ELit (LInt i) (Just TInt))) = Right $ n ++ ": dq " ++ show i
codegenVar _ = Left "Unsupported global variable declaration"


type AllocMap = Map.Map Ref XRef

codegenFunc :: IRFunc -> CGMonad ()
codegenFunc (IRFunc _ name al bbs sid) = do
    let temprefsperbb = collectTempRefs bbs
        alltemprefs = uniq $ sort $ map LA.unAccess $ concat $ concat $ map fst temprefsperbb
        lifespans = map (\r -> (findLifeSpan r, r)) alltemprefs
            where findLifeSpan ref =
                      fromJust $ findFirstLast id $ concat $ LA.lifetimeAnalysis ref temprefsperbb

        aliascandidates = findAliasCandidates bbs :: [(Ref, Ref)]

        gpRegs = [R8, R9, R10, R11, R12, R13, R14, R15]
        allocation = regalloc lifespans gpRegs aliascandidates :: Map.Map Ref (Allocation Register)

        spillrefs = map fst $ filter (isAllocMem . snd) $ Map.toList allocation
        (spilloffsets, spillsz) = initLast $ scanl (+) 0 $ map refSize spillrefs
        spilloffsetmap = Map.fromList $ zip spillrefs spilloffsets

        usedregs = uniq $ sort $ catMaybes $ flip map (Map.toList allocation) $ \(_, a) -> case a of
            AllocReg reg -> Just reg
            AllocMem -> Nothing

    -- traceShowM temprefsperbb
    -- traceShowM lifespans
    traceM $ "ALLOCATION: " ++ show allocation

    let nsaves = length usedregs
        allocationXref = flip Map.mapWithKey allocation $ \ref alloc -> case alloc of
            AllocReg reg -> XReg (fromIntegral $ refSize ref) reg
            AllocMem -> XMem (fromIntegral $ refSize ref)
                             (Just RSP) (0, RAX) Nothing
                             (fromIntegral $ spilloffsetmap ! ref)
        allocmap = foldl inserter allocationXref (zip al [0::Int ..])
          where
            inserter m ((t, n), i) =
                let offset = fromIntegral spillsz + 8 * nsaves + 8 {- rbp -} + 8 {- ret addr -} + 8 * i
                in Map.insert (Argument (sizeof t) n)
                              (XMem (fromIntegral $ sizeof t)
                                    (Just RSP) (0, RAX) Nothing
                                    (fromIntegral offset))
                              m

    newLabel name
    addIns $ PUSH (xref $ XReg 8 RBP)
    addIns $ MOV (xref $ XReg 8 RBP) (xref $ XReg 8 RSP)
    forM_ usedregs $ \reg -> addIns $ PUSH (xref $ XReg 8 reg)
    when (spillsz /= 0) $ addIns $ SUB (xref $ XReg 8 RSP) (xref $ XImm $ fromIntegral spillsz)
    setRegsToRestore usedregs
    setSpillSize spillsz

    let ([startbb], rest) = partition (\(BB i _ _) -> i == sid) bbs
    codegenBB allocmap startbb
    mapM_ (codegenBB allocmap) rest

findAliasCandidates :: [BB] -> [(Ref, Ref)]
findAliasCandidates = concatMap (\(BB _ inss _) -> concatMap goI inss)
  where
    goI :: IRIns -> [(Ref, Ref)]
    goI (IMov d s) = [(d, s)]
    goI (IAri at d s1 s2)
        | isCommutative at = [(d, s1), (d, s2)]
        | otherwise = [(d, s1)]
    goI _ = []

findFirstLast :: forall a. (a -> Bool) -> [a] -> Maybe (Int, Int)
findFirstLast f l = go Nothing 0 l
  where
    go :: Maybe (Int, Int) -> Int -> [a] -> Maybe (Int, Int)
    go mr _ [] = mr
    go mr i (x:xs)
        | f x = go (note mr i) (i+1) xs
        | otherwise = go mr (i+1) xs

    note :: Maybe (Int, Int) -> Int -> Maybe (Int, Int)
    note Nothing i = Just (i, i)
    note (Just (a, _)) i = Just (a, i)

isAllocMem :: Allocation a -> Bool
isAllocMem AllocMem = True
isAllocMem _ = False

initLast :: [a] -> ([a], a)
initLast [] = undefined
initLast [x] = ([], x)
initLast (x:xs) = let (acc, l) = initLast xs in (x : acc, l)

codegenBB :: AllocMap -> BB -> CGMonad ()
codegenBB allocmap (BB bid inss term) = do
    newLabel $ ".bb" ++ show bid
    mapM_ (codegenIns allocmap) inss
    codegenTerm allocmap term

mkxref :: Ref -> AllocMap -> XRef
mkxref (Constant _ v) _ = XImm v
mkxref (Global sz n) _ = XMem (fromIntegral sz) Nothing (0, RAX) (Just n) 0
mkxref r m = fromJust $ Map.lookup r m

mkmov :: XRef -> XRef -> X64.Ins
mkmov a@(XReg _ _) b@(XReg _ _) = MOV (xref a) (xref b)
mkmov a@(XReg _ _) b@(XMem _ _ _ _ _) = MOV (xref a) (xref b)
mkmov a@(XReg _ _) b@(XImm _) = MOVi64 (xref a) (xref b)
mkmov a@(XMem _ _ _ _ _) b@(XReg _ _) = MOV (xref a) (xref b)
mkmov a@(XMem _ _ _ _ _) b@(XImm v) | v < 2 ^ (32 :: Int) = MOVi (xref a) (xref b)
mkmov a b = CALL $ "Invalid mkmov: " ++ show a ++ "; " ++ show b
-- mkmov a b = error $ "Invalid mkmov: " ++ show a ++ "; " ++ show b

mkcmp :: XRef -> XRef -> X64.Ins
mkcmp a b@(XImm _) = CMPi (xref a) (xref b)
mkcmp a b = CMP (xref a) (xref b)

codegenIns :: AllocMap -> IRIns -> CGMonad ()
codegenIns m (IMov d s)
    | dm == sm = return ()
    | X64.isXMem dm && X64.isXMem sm = do
        addIns $ mkmov (XReg (fromIntegral $ refSize s) RAX) sm
        addIns $ mkmov dm (XReg (fromIntegral $ refSize d) RAX)
    | otherwise = addIns $ mkmov dm sm
  where dm = mkxref d m
        sm = mkxref s m
codegenIns m (IStore d s) = do
    sourcexref <- if X64.isXMem sm
        then do
            addIns $ mkmov (XReg sz RBX) sm
            return $ XReg sz RBX
        else return sm
    destxref <- case dm of
        XReg _ r -> return $ XMem sz (Just r) (0, RAX) Nothing 0
        x@(XMem xsz _ _ _ _) -> do
            addIns $ mkmov (XReg xsz RAX) x
            return $ XMem sz (Just RAX) (0, RAX) Nothing 0
        XImm _ -> throwError $ "IStore to [immediate] not expected"
    addIns $ mkmov destxref sourcexref
  where dm = mkxref d m
        sm = mkxref s m
        sz = fromIntegral $ refSize s
codegenIns m (ILoad d s) = do
    sourcexref <- case sm of
        XReg _ r -> return $ XMem sz (Just r) (0, RAX) Nothing 0
        x@(XMem xsz _ _ _ _) -> do
            addIns $ mkmov (XReg xsz RAX) x
            return $ XMem sz (Just RAX) (0, RAX) Nothing 0
        XImm _ -> throwError $ "ILoad from [immediate] not expected"
    if X64.isXMem dm
        then do
            addIns $ mkmov (XReg sz RAX) sourcexref
            addIns $ mkmov dm (XReg sz RAX)
        else do
            addIns $ mkmov dm sourcexref
  where dm = mkxref d m
        sm = mkxref s m
        sz = fromIntegral $ refSize d
codegenIns m (IAri AMul d s1 s2) = do
    let sz = fromIntegral $ refSize d
    addIns $ mkmov (XReg sz RAX) (mkxref s1 m)
    addIns $ mkmov (XReg sz RBX) (mkxref s2 m)
    addIns $ IMULDA (xref $ XReg sz RBX)
    addIns $ mkmov (mkxref d m) (XReg sz RAX)
codegenIns m (IAri ADiv d s1 s2) = do
    let sz = fromIntegral $ refSize d
    addIns $ XOR (xref $ XReg 4 RDX) (xref $ XReg 4 RDX)
    addIns $ mkmov (XReg sz RAX) (mkxref s1 m)
    addIns $ mkmov (XReg sz RBX) (mkxref s2 m)
    addIns $ IDIVDA (xref $ XReg sz RBX)
    addIns $ mkmov (mkxref d m) (XReg sz RAX)
codegenIns m (IAri AMod d s1 s2) = do
    let sz = fromIntegral $ refSize d
    addIns $ XOR (xref $ XReg 4 RDX) (xref $ XReg 4 RDX)
    addIns $ mkmov (XReg sz RAX) (mkxref s1 m)
    addIns $ mkmov (XReg sz RBX) (mkxref s2 m)
    addIns $ IDIVDA (xref $ XReg sz RBX)
    addIns $ mkmov (mkxref d m) (XReg sz RDX)
codegenIns m (IAri at d s1 s2) = case arithTypeToCondCode at of
    Just cc -> do
        arg2 <- if X64.isXMem s1m && X64.isXMem s2m
                    then do
                        addIns $ mkmov (XReg (fromIntegral $ refSize s2) RAX) s2m
                        return $ XReg (fromIntegral $ refSize s2) RAX
                    else return s2m
        addIns $ mkcmp s1m arg2
        addIns $ SETCC cc (xref $ X64.xrefSetSize 1 dm)
        addIns $ AND (xref $ X64.xrefSetSize 4 dm) (xref $ XImm 0xff)
    Nothing -> do
        (_, s1m', s2', s2m') <-
            if dm == s2m
                then if dm == s1m
                        then return (s1, s1m, s2, s2m)
                        else if isCommutative at
                                then return (s2, s2m, s1, s1m)
                                else throwError "Noncommutative op with d==s2/=s1"
                else return (s1, s1m, s2, s2m)
                    
        arg2 <- if X64.isXMem s1m' && X64.isXMem s2m'
                    then do
                        addIns $ mkmov (XReg (fromIntegral $ refSize s2') RAX) s2m'
                        return $ XReg (fromIntegral $ refSize s2') RAX
                    else return s2m'
        when (dm /= s1m') $ addIns $ mkmov dm s1m'
        addIns $ fromJust (arithTypeToIns at) dm arg2
  where dm = mkxref d m
        s1m = mkxref s1 m
        s2m = mkxref s2 m
codegenIns m (ICall n rs) = do
    forM_ (zip (reverse rs) [1::Int ..]) $ \(r, i) ->
        let sz = fromIntegral $ refSize r
            src = (mkxref r m)
            dst = (XMem sz (Just RSP) (0, RAX) Nothing (fromIntegral $ (-8) * i))
        in if X64.isXMem (mkxref r m)
            then do
                addIns $ mkmov (XReg sz RAX) src
                addIns $ mkmov dst (XReg sz RAX)
            else do
                addIns $ mkmov dst src
    when (length rs > 0) $ addIns $ SUB (xref $ XReg 8 RSP) (xref $ XImm (fromIntegral $ 8 * length rs))
    addIns $ CALL n
    when (length rs > 0) $ addIns $ ADD (xref $ XReg 8 RSP) (xref $ XImm (fromIntegral $ 8 * length rs))
codegenIns m (ICallr d n rs) = do
    codegenIns m (ICall n rs)
    addIns $ mkmov (mkxref d m) (XReg (fromIntegral $ refSize d) RAX)
codegenIns m fullins@(IResize d s) = do
    let dsz = fromIntegral $ refSize d
        ssz = fromIntegral $ refSize s
        dm = mkxref d m
        sm = mkxref s m
    when (X64.isXImm sm) $
        throwError $ "Resized value is an immediate in " ++ show fullins ++
                     "; (dm = " ++ show dm ++ "; sm = " ++ show sm ++ ")"
    case compare dsz ssz of
        EQ -> codegenIns m (IMov d s)
        GT -> if X64.isXMem dm
                then do
                    addIns $ MOVSX (xref $ XReg dsz RAX) (xref sm)
                    addIns $ mkmov dm (XReg dsz RAX)
                else do
                    addIns $ MOVSX (xref dm) (xref sm)
        LT -> if X64.isXMem dm && X64.isXMem sm
                then do
                    addIns $ mkmov (XReg dsz RAX) (X64.xrefSetSize dsz sm)
                    addIns $ mkmov dm (XReg dsz RAX)
                else do
                    addIns $ mkmov dm (X64.xrefSetSize dsz sm)
codegenIns _ INop = return ()

arithTypeToCondCode :: ArithType -> Maybe X64.CondCode
arithTypeToCondCode AEq = Just CCE
arithTypeToCondCode ANeq = Just CCNE
arithTypeToCondCode AGt = Just CCG
arithTypeToCondCode ALt = Just CCL
arithTypeToCondCode AGeq = Just CCGE
arithTypeToCondCode ALeq = Just CCLE
arithTypeToCondCode _ = Nothing

cmpTypeToCondCode :: CmpType -> X64.CondCode
cmpTypeToCondCode CEq = CCE
cmpTypeToCondCode CNeq = CCNE
cmpTypeToCondCode CGt = CCG
cmpTypeToCondCode CLt = CCL
cmpTypeToCondCode CGeq = CCGE
cmpTypeToCondCode CLeq = CCLE

arithTypeToIns :: ArithType -> Maybe (XRef -> XRef -> X64.Ins)
arithTypeToIns AAdd = Just $ \a b -> ADD (xref a) (xref b)
arithTypeToIns ASub = Just $ \a b -> SUB (xref a) (xref b)
arithTypeToIns AAnd = Just $ \a b -> AND (xref a) (xref b)
arithTypeToIns AOr = Just $ \a b -> OR (xref a) (xref b)
arithTypeToIns AXor = Just $ \a b -> XOR (xref a) (xref b)
arithTypeToIns _ = Nothing

codegenTerm :: AllocMap -> IRTerm -> CGMonad ()
codegenTerm m (IJcc ct a b t e) = do
    if X64.isXMem am && X64.isXMem bm
        then do
            addIns $ mkmov (XReg (fromIntegral $ refSize b) RAX) bm
            addIns $ mkcmp am (XReg (fromIntegral $ refSize b) RAX)
        else do
            addIns $ mkcmp am bm
    addIns $ JCC (cmpTypeToCondCode ct) (".bb" ++ show t)
    addIns $ JMP (".bb" ++ show e)
  where
    am = mkxref a m
    bm = mkxref b m
codegenTerm _ (IJmp i) = addIns $ JMP (".bb" ++ show i)
codegenTerm _ IRet = do
    spillsz <- gets spillSize
    when (spillsz /= 0) $ addIns $ ADD (xref $ XReg 8 RSP) (xref $ XImm $ fromIntegral spillsz)
    usedregs <- gets regsToRestore
    forM_ (reverse usedregs) $ \reg -> addIns $ POP (xref $ XReg 8 reg)
    addIns $ mkmov (XReg 8 RSP) (XReg 8 RBP)
    addIns $ POP (xref $ XReg 8 RBP)
    addIns RET
codegenTerm m (IRetr r) = do
    addIns $ mkmov (XReg (fromIntegral $ refSize r) RAX) (mkxref r m)
    spillsz <- gets spillSize
    when (spillsz /= 0) $ addIns $ ADD (xref $ XReg 8 RSP) (xref $ XImm $ fromIntegral spillsz)
    usedregs <- gets regsToRestore
    forM_ (reverse usedregs) $ \reg -> addIns $ POP (xref $ XReg 8 reg)
    addIns $ mkmov (XReg 8 RSP) (XReg 8 RBP)
    addIns $ POP (xref $ XReg 8 RBP)
    addIns RET
codegenTerm _ ITermNone = undefined


collectTempRefs :: [BB] -> [([[LA.Access Ref]], [Int])]
collectTempRefs bbs =
    flip map bbs $ \(BB _ inss term) ->
        let refs = map (filter (isTemp . LA.unAccess)) $ concatMap listRefsIns inss ++ listRefsTerm term
            nexts = map (\i -> fromJust $ findIndex (\(BB j _ _) -> j == i) bbs) $ listNextIds term
        in (refs, nexts)
  where
    listRefsIns :: IRIns -> [[LA.Access Ref]]
    listRefsIns (IMov a b) = [[LA.Read b], [LA.Write a]]
    listRefsIns (IStore a b) = [[LA.Read a, LA.Read b]]
    listRefsIns (ILoad a b) = [[LA.Read b], [LA.Write a]]
    listRefsIns (IAri at a b c)
            -- if not commutative, we don't want to have to xchg the operands
        | isCommutative at = [[LA.Read b, LA.Read c], [LA.Write a]]
        | otherwise = [[LA.Read b], [LA.Read c, LA.Write a]]
    listRefsIns (ICall _ l) = [map LA.Read l]
    listRefsIns (ICallr a _ l) = [LA.Write a : map LA.Read l]
    listRefsIns (IResize a b) = [[LA.Read b], [LA.Write a]]
    listRefsIns INop = [[]]

    listRefsTerm :: IRTerm -> [[LA.Access Ref]]
    listRefsTerm (IJcc _ a b _ _) = [[LA.Read a, LA.Read b]]
    listRefsTerm (IJmp _) = [[]]
    listRefsTerm IRet = [[]]
    listRefsTerm (IRetr a) = [[LA.Read a]]
    listRefsTerm ITermNone = undefined

    listNextIds :: IRTerm -> [Id]
    listNextIds (IJcc _ _ _ a b) = [a, b]
    listNextIds (IJmp a) = [a]
    listNextIds IRet = []
    listNextIds (IRetr _) = []
    listNextIds ITermNone = undefined

    isTemp :: Ref -> Bool
    isTemp (Temp _ _) = True
    isTemp _ = False