1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
{-# LANGUAGE DeriveFunctor, GeneralizedNewtypeDeriving #-}
module Compiler(IRProgram, compileProgram) where
import Control.Monad.Except
import Control.Monad.State.Strict
import Data.List
import qualified Data.Map.Strict as Map
import qualified Data.Set as Set
import AST
import Intermediate
data TaggedValue
= TVList [TaggedValue]
| TVNum Int
| TVString String
| TVName Name (Maybe Int) -- Nothing: unknown, Just n: defined n lambdas up (0 = current lambda arg)
| TVQuoted Value
| TVDefine Name TaggedValue
| TVLambda [Name] TaggedValue [Name] -- (args) (body) (closure slot names)
| TVEllipsis
deriving Show
-- also does some preprocessing, like parsing lambda's and defines
analyseValue :: Value -> TaggedValue
analyseValue = go []
where
go :: [Set.Set Name] -> Value -> TaggedValue
go scopes (VList [VName "define", VName name, VList args, body])
| Just names <- mapM fromVName args = go scopes (VList [VName "define", VName name, VLambda names body])
| otherwise = error "Invalid 'define' shorthand syntax: Invalid argument list"
go scopes (VList [VName "define", VName name, value]) = TVDefine name (go scopes value)
go scopes (VList [VName "lambda", VList args, body])
| Just names <- mapM fromVName args = go scopes (VLambda names body)
| otherwise = error "Invalid 'lambda' syntax: Invalid argument list"
go _ (VList (VName "lambda" : _)) = error "Invalid 'lambda' syntax"
go scopes (VList values) = TVList (map (go scopes) values)
go _ (VNum n) = TVNum n
go _ (VString s) = TVString s
go scopes (VName name) = TVName name (findIndex id (map (Set.member name) scopes))
go _ (VQuoted value) = TVQuoted value
go scopes (VLambda args body) =
let t = go (Set.fromList args : scopes) body
in TVLambda args t (Set.toList (collectEscapes 0 t))
go _ (VBuiltin _) = undefined
go _ VEllipsis = TVEllipsis
collectEscapes :: Int -> TaggedValue -> Set.Set Name
collectEscapes limit (TVList values) = Set.unions (map (collectEscapes limit) values)
collectEscapes limit (TVName name (Just n)) | n > limit = Set.singleton name
collectEscapes limit (TVLambda _ body _) = collectEscapes (limit + 1) body
collectEscapes _ _ = Set.empty
data CompState = CompState
{ csNextId :: Int
, csBlocks :: Map.Map Int BB
, csCurrent :: Int
, csScopes :: [Map.Map Name ScopeItem]
, csDefines :: Map.Map Name Ref
, csBuiltins :: Map.Map Name ()
, csFunctions :: Map.Map Name GlobFuncDef
, csDatas :: [Value] }
deriving Show
data ScopeItem = SIParam Int | SIClosure Int | SIGlobal
deriving Show
newtype CM a = CM {unCM :: StateT CompState (Except String) a}
deriving (Functor, Applicative, Monad, MonadState CompState, MonadError String)
-- TODO: extra info like number of arguments, dunno, might be useful
builtinMap :: Map.Map Name ()
builtinMap = Map.fromList [
("+", ()), ("-", ()), ("<=", ()), ("print", ()),
("list", ()), ("car", ()), ("cdr", ())]
bbId :: BB -> Int
bbId (BB i _ _) = i
initState :: CompState
initState = CompState 0 Map.empty undefined [] Map.empty builtinMap Map.empty []
runCM :: CM a -> Either String a
runCM act = runExcept $ evalStateT (unCM act) initState
genId :: CM Int
genId = state $ \s -> (csNextId s, s {csNextId = csNextId s + 1})
genTemp :: CM Ref
genTemp = liftM RTemp genId
newBlock :: CM Int
newBlock = do
i <- genId
modify $ \s -> s {csBlocks = Map.insert i (BB i [] IUnknown) (csBlocks s)}
return i
switchBlock :: Int -> CM ()
switchBlock i = modify $ \s -> s {csCurrent = i}
newBlockSwitch :: CM Int
newBlockSwitch = do
i <- newBlock
switchBlock i
return i
rememberBlock :: CM a -> CM a
rememberBlock act = do
b <- gets csCurrent
res <- act
switchBlock b
return res
modifyBlock :: (BB -> BB) -> CM ()
modifyBlock f = do
st <- get
let current = csCurrent st
Just bb = Map.lookup current (csBlocks st)
put $ st {csBlocks = Map.insert current (f bb) (csBlocks st)}
addIns :: Instruction -> CM ()
addIns ins = modifyBlock $ \(BB i inss term) -> BB i (inss ++ [ins]) term
setTerm :: Terminator -> CM ()
setTerm term = modifyBlock $ \(BB i inss _) -> BB i inss term
lookupVar :: Name -> CM (Either ScopeItem Ref)
lookupVar name = gets csScopes >>= \scopes -> case msum (map (Map.lookup name) scopes) of
Just si -> return (Left si)
Nothing -> gets csDefines >>= \defines -> case Map.lookup name defines of
Just ref -> return (Right ref)
Nothing -> return (Left SIGlobal)
dataTableAdd :: Value -> CM Int
dataTableAdd v = state $ \ctx -> (length (csDatas ctx), ctx {csDatas = csDatas ctx ++ [v]})
functionAdd :: Name -> GlobFuncDef -> CM ()
functionAdd name gfd = modify $ \s -> s {csFunctions = Map.insert name gfd (csFunctions s)}
defineAdd :: Name -> Ref -> CM ()
defineAdd name ref = modify $ \s -> s {csDefines = Map.insert name ref (csDefines s)}
withScope :: Map.Map Name ScopeItem -> CM a -> CM a
withScope sc act = do
modify $ \s -> s {csScopes = sc : csScopes s}
res <- act
modify $ \s -> s {csScopes = tail (csScopes s)}
return res
compileProgram :: Program -> Either String IRProgram
compileProgram (Program values) = runCM $ do
bstart <- newBlockSwitch
addIns (RNone, IApplicationEntry)
forM_ values $ \value -> do
bnext <- newBlock
ref <- genTValue (analyseValue value) bnext
switchBlock bnext
addIns (RNone, IDiscard ref)
setTerm IExit
(bbs, otherbbs) <- liftM (partition ((== bstart) . bbId) . Map.elems) (gets csBlocks)
let firstbb = case bbs of
[bb] -> bb
_ -> error "Multiple bb's with the same ID!"
funcs <- gets csFunctions
datas <- gets csDatas
return (IRProgram (firstbb : otherbbs) funcs datas)
genTValue :: TaggedValue -> Int -> CM Ref
genTValue (TVList []) _ = throwError "Empty call"
genTValue (TVList (TVName "do" _ : stmts)) nextnext = do
forM_ (init stmts) $ \stmt -> do
b <- newBlock
r <- genTValue stmt b
switchBlock b
addIns (RNone, IDiscard r)
genTValue (last stmts) nextnext
genTValue (TVList [TVName "if" _, cond, val1, val2]) nextnext = do
b1 <- newBlock
bthen <- newBlock
belse <- newBlock
bthen' <- newBlock
belse' <- newBlock
condref <- genTValue cond b1
switchBlock b1
setTerm $ IBr condref bthen belse
resref <- genTemp
switchBlock bthen
thenref <- genTValue val1 bthen'
switchBlock bthen'
addIns (resref, IAssign thenref)
setTerm $ IJmp nextnext
switchBlock belse
elseref <- genTValue val2 belse'
switchBlock belse'
addIns (resref, IAssign elseref)
setTerm $ IJmp nextnext
return resref
genTValue (TVList (TVName "if" _ : _)) _ = throwError "Invalid 'if' syntax"
genTValue (TVList (funcexpr : args)) nextnext = do
refs <- forM args $ \value -> do
bnext <- newBlock
ref <- genTValue value bnext
switchBlock bnext
return ref
b <- newBlock
funcref <- genTValue funcexpr b
switchBlock b
resref <- genTemp
addIns (resref, ICallC funcref refs)
setTerm $ IJmp nextnext
return resref
genTValue (TVNum n) nextnext = do
setTerm $ IJmp nextnext
return (RConst n)
genTValue (TVString s) nextnext = do
i <- dataTableAdd (VString s)
r <- genTemp
addIns (r, IData i)
setTerm $ IJmp nextnext
return r
genTValue (TVQuoted v) nextnext = do
i <- dataTableAdd v
r <- genTemp
addIns (r, IData i)
setTerm $ IJmp nextnext
return r
genTValue (TVDefine name value) nextnext = do
dref <- genTemp
defineAdd name dref
vref <- genTValue value nextnext
-- traceM $ "Defining '" ++ name ++ "', ref " ++ show dref ++ ", with value " ++ show vref
addIns (dref, IAssign vref)
return RNone
genTValue (TVLambda args body closure) nextnext = do
startb <- rememberBlock $
withScope (Map.fromList (zip args (map SIParam [0..]) ++ zip closure (map SIClosure [0..]))) $ do
b <- newBlockSwitch
b2 <- newBlock
addIns (RNone, IFunctionEntry)
ref <- genTValue body b2
switchBlock b2
setTerm $ IRet ref
return b
uid <- genId
let uname = show uid ++ "L" -- starts with digit, so cannot clash with user-defined name
functionAdd uname (GlobFuncDef startb (length args) closure)
resref <- case closure of
[] -> return (RSClo uname)
_ -> do
refs <- forM closure $ \cname -> do
b <- newBlock
r <- genTValue (TVName cname undefined) b
switchBlock b
return r
r <- genTemp
addIns (r, IAllocClo uname refs)
return r
setTerm $ IJmp nextnext
return resref
genTValue (TVName name _) nextnext = do
r <- genTemp
lookupVar name >>= \si -> case si of
Right ref -> addIns (r, IAssign ref)
Left (SIParam n) -> addIns (r, IParam n)
Left (SIClosure n) -> addIns (r, IClosure n)
Left SIGlobal -> do
funcs <- gets csFunctions
builtins <- gets csBuiltins
case (Map.lookup name funcs, Map.lookup name builtins) of
(Just (GlobFuncDef _ _ []), _) -> addIns (r, IAssign (RSClo name))
(Just (GlobFuncDef _ _ cs), _) -> do
refs <- foldM (\refs' cname -> do
b <- newBlock
r' <- genTValue (TVName cname undefined) b
switchBlock b
return (r' : refs'))
[] cs
addIns (r, IAllocClo name refs)
(_, Just ()) -> addIns (r, IAssign (RSClo name))
_ -> throwError $ "Use of undefined name \"" ++ name ++ "\""
setTerm $ IJmp nextnext
return r
genTValue TVEllipsis _ = throwError "Ellipses not supported in compiler"
|