1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE ViewPatterns #-}
module TypeCheck (checkProgram, typeCheck, typeInfer) where
import Control.Monad
-- import Control.Monad.Trans.Class
-- import Control.Monad.Trans.State.Strict
-- import Control.Monad.Trans.Writer.CPS
-- import Data.Foldable (toList)
-- import Data.Map.Strict (Map)
import qualified Data.Map.Strict as Map
import Numeric.Natural
import AST
checkProgram :: Env -> [Definition] -> Either String Env
checkProgram = foldM $ \env (Definition name jud@(_ :| ty)) -> do
ty' <- runTM (inferW env ty) >>= \case
ty' :| TSet _ -> return ty'
ty' :| TSetw _ -> return ty'
_ :| kind -> Left $ "Kind of declared type is not Set i or Setw i, but: " ++ show kind
term <- typeCheck env jud
return (Map.insert name (Just term :| ty') env)
typeCheck :: Env -> OfType Term Term -> Either String Term
typeCheck env jud =
runTM (check env jud)
-- runTM (check env jud) >>= \case
-- ([], term') -> return term'
-- (_, _) -> error "Don't know how to solve constraints yet"
typeInfer :: Env -> Term -> Either String (OfType Term Term)
typeInfer env term =
runTM (infer env term)
-- runTM (infer env term) >>= \case
-- ([], jud) -> return jud
-- (_, _) -> error "Don't know how to solve constraints yet"
-- | type checking monad
newtype TM a = TM ({- WriterT (Bag Constr) (StateT Natural ( -} Either String {- )) -} a)
deriving stock (Functor)
deriving newtype (Applicative, Monad)
data Bag a = BTwo (Bag a) (Bag a) | BOne a | BZero
deriving stock (Show, Functor, Foldable)
instance Semigroup (Bag a) where (<>) = BTwo
instance Monoid (Bag a) where mempty = BZero
data Constr = VarEq Name Term
| LevelLeq Term Term
deriving (Show)
runTM :: TM a -> Either String a
runTM (TM m) = m
-- (res, cs) <- evalStateT (runWriterT m) 0
-- return (toList cs, res)
-- genId :: TM Natural
-- genId = TM (lift (state (\i -> (i, i + 1))))
-- genName :: TM Name
-- genName = ("." ++) . show <$> genId
throw :: String -> TM a
-- throw err = TM (lift (lift (Left err)))
throw err = TM (Left err)
-- emit :: Constr -> TM ()
-- emit c = TM (tell (BOne c))
check :: Env -> OfType Term Term -> TM Term
check env (topTerm :| typ) = case topTerm of
TPair a b -> do
case whnf env typ of
TSigma name t1 t2 -> do
a' <- check env (a :| t1)
b' <- check (Map.insert name (Nothing :| t1) env) (b :| t2)
return (TPair a' b')
t -> throw $ "Pair expression cannot have type " ++ show t
_ -> do
e' :| typ2 <- infer env topTerm
unify typ typ2
return e'
-- | Evaluate the type part of the return value to WHNF before returning.
inferW :: Env -> Term -> TM (OfType Term Term)
inferW env term = do
e :| ty <- infer env term
return (e :| whnf env ty)
infer :: Env -> Term -> TM (OfType Term Term)
infer env = \case
TSet i -> do
return (TSet i :| TSet (TISucc i))
TSetw i -> do
return (TSetw i :| TSetw (succ i))
TVar n -> do
case Map.lookup n env of
Just (_ :| ty) -> return (TVar n :| ty)
Nothing -> throw $ "Variable out of scope: " ++ n
TPi x a b -> do
inferW env a >>= \case
a' :| (argumentKind -> Just kindA) -> do
inferW (Map.insert x (Nothing :| a') env) b >>= \case
b' :| (argumentKind -> Just kindB) -> do
return (TPi x a' b' :| akLower (kindA <> kindB))
_ :| tb -> throw $ "RHS of a Pi not of acceptable type, but: " ++ show tb
_ :| ta -> throw $ "LHS type of a Pi not of acceptable type, but: " ++ show ta
TLam x t e -> do
inferW env t >>= \case
t' :| _ -> do
e' :| te <- inferW (Map.insert x (Nothing :| t') env) e
return (TLam x t' e' :| TPi x t' te)
TApp a b -> do
inferW env a >>= \case
a' :| TPi name t1 t2 -> do
b' <- check env (b :| t1)
return (TApp a' b' :| subst name b' t2)
_ :| ta -> throw $ "LHS of application not of Pi type, but: " ++ show ta
TLift e -> do
inferW env e >>= \case
e' :| TSet lvl -> do
return (TLift e' :| TSet (TISucc lvl))
_ :| te -> throw $ "Argument to lift not of type Set i, but: " ++ show te
TLevel -> do
return (TLevel :| TLevelUniv)
TLevelUniv -> do
return (TLevelUniv :| TSet (TISucc TIZero))
TIZero -> do
return (TIZero :| TLevel)
TIMax a b -> do
infer env a >>= \case
a' :| TLevel -> do
inferW env b >>= \case
b' :| TLevel -> do
return (TIMax a' b' :| TLevel)
_ :| tb -> throw $ "RHS of imax not of type Level, but: " ++ show tb
_ :| ta -> throw $ "LHS of imax not of type Level, but: " ++ show ta
TISucc a -> do
inferW env a >>= \case
a' :| TLevel -> do
return (TISucc a' :| TLevel)
_ :| ta -> throw $ "Argument of isucc not of type Level, but: " ++ show ta
TAnnot (a :| b) -> do
inferW env b >>= \case
b' :| _ -> do
a' <- check env (a :| b')
return (a' :| b')
TOne -> do
return (TOne :| TSet TIZero)
TUnit -> do
return (TUnit :| TOne)
TSigma x a b -> do
inferW env a >>= \case
a' :| (argumentKind -> Just kindA) -> do
inferW (Map.insert x (Nothing :| a') env) b >>= \case
b' :| (argumentKind -> Just kindB) -> do
return (TSigma x a' b' :| akLower (kindA <> kindB))
_ :| tb -> throw $ "RHS of a Sigma not of acceptable type, but: " ++ show tb
_ :| ta -> throw $ "LHS type of a Sigma not of acceptable type, but: " ++ show ta
TPair{} -> do
throw "Dependent pair occurring in non-checking position"
TProj1 e -> do
inferW env e >>= \case
e' :| TSigma _name t1 _t2 -> do
return (TProj1 e' :| t1)
_ :| t -> throw $ "Argument of proj1 not of Sigma type, but: " ++ show t
TProj2 e -> do
inferW env e >>= \case
e' :| TSigma name _t1 t2 -> do
return (TProj2 e' :| subst name (TProj1 e') t2)
_ :| t -> throw $ "Argument of proj2 not of Sigma type, but: " ++ show t
data ArgKind = AKSet Term | AKSetw Natural | AKLevelUniv
deriving (Show)
instance Semigroup ArgKind where
AKSet n <> AKSet m = AKSet (TIMax n m)
AKSet _ <> ak = AKSetw 0 <> ak
ak <> AKSet _ = ak <> AKSetw 0
AKLevelUniv <> AKLevelUniv = AKLevelUniv
AKLevelUniv <> ak = AKSetw 0 <> ak
ak <> AKLevelUniv = ak <> AKSetw 0
AKSetw i <> AKSetw j = AKSetw (max i j)
argumentKind :: Term -> Maybe ArgKind
argumentKind (TSet t) = Just (AKSet t)
argumentKind (TSetw i) = Just (AKSetw i)
argumentKind TLevelUniv = Just AKLevelUniv
argumentKind _ = Nothing
akLower :: ArgKind -> Term
akLower (AKSet t) = TSet t
akLower (AKSetw i) = TSetw i
akLower AKLevelUniv = TLevelUniv
-- freeIn :: Name -> Term -> Bool
-- freeIn target = \case
-- TSet a -> rec a
-- TSetw _ -> False
-- TVar n -> n == target
-- TPi n a b -> rec a || (if n == target then True else rec b)
-- TLam n a b -> rec a || (if n == target then True else rec b)
-- TApp a b -> rec a || rec b
-- TLift a -> rec a
-- TLevel -> False
-- TLevelUniv -> False
-- TIZero -> False
-- TIMax a b -> rec a || rec b
-- TISucc a -> rec a
-- TAnnot (a :| b) -> rec a || rec b
-- TOne -> False
-- TUnit -> False
-- TSigma n a b -> rec a || (if n == target then True else rec b)
-- TPair a b -> rec a || rec b
-- TProj1 a -> rec a
-- TProj2 a -> rec a
-- where
-- rec = freeIn target
subst :: Name -> Term -> Term -> Term
subst target repl = \case
TVar n | n == target -> repl
TSet a -> TSet (rec a)
TSetw i -> TSetw i
TVar n -> TVar n
TPi n a b -> TPi n (rec a) (if n == target then b else rec b)
TLam n a b -> TLam n (rec a) (if n == target then b else rec b)
TApp a b -> TApp (rec a) (rec b)
TLift a -> TLift (rec a)
TLevel -> TLevel
TLevelUniv -> TLevelUniv
TIZero -> TIZero
TIMax a b -> TIMax (rec a) (rec b)
TISucc a -> TISucc (rec a)
TAnnot (a :| b) -> TAnnot (rec a :| rec b)
TOne -> TOne
TUnit -> TUnit
TSigma n a b -> TSigma n (rec a) (if n == target then b else rec b)
TPair a b -> TPair (rec a) (rec b)
TProj1 a -> TProj1 (rec a)
TProj2 a -> TProj2 (rec a)
where
rec = subst target repl
unify :: Term -> Term -> TM ()
unify (TSet a) (TSet b) = unify a b
unify (TSetw i) (TSetw j) | i == j = return ()
unify (TVar n) (TVar m) | n == m = return ()
unify (TPi n a b) (TPi m c d) = unify a c >> unify b (subst m (TVar n) d)
unify (TLam n a b) (TLam m c d) = unify a c >> unify b (subst m (TVar n) d)
unify (TLift a) (TLift b) = unify a b
unify TLevel TLevel = return ()
unify TLevelUniv TLevelUniv = return ()
unify TIZero TIZero = return ()
unify (TIMax a b) (TIMax c d) = unify a c >> unify b d
unify (TISucc a) (TISucc b) = unify a b
unify TOne TOne = return ()
unify TUnit TUnit = return ()
unify (TSigma n a b) (TSigma m c d) = unify a c >> unify b (subst m (TVar n) d)
unify (TPair a b) (TPair c d) = unify a c >> unify b d
unify (TProj1 a) (TProj1 b) = unify a b
unify (TProj2 a) (TProj2 b) = unify a b
unify a b = throw $ "Cannot unify:\n- " ++ show a ++ "\n- " ++ show b
whnf :: Env -> Term -> Term
whnf env = \case
TApp (TLam n _ a) b -> whnf env (subst n b a)
TIMax a b -> merge (whnf env a) (whnf env b)
where -- TODO all of the properties from https://agda.readthedocs.io/en/v2.6.3/language/universe-levels.html#intrinsic-level-properties
merge TIZero l = l
merge l TIZero = l
merge (TISucc l) (TISucc m) = TISucc (merge l m)
merge l m = TIMax l m
TProj1 (TPair a _) -> a
TProj2 (TPair _ b) -> b
t -> t
|