1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ImportQualifiedPost #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
module Data.Array.Mixed.Internal.Arith where
import Control.Monad (forM, guard)
import Data.Array.Internal qualified as OI
import Data.Array.Internal.RankedG qualified as RG
import Data.Array.Internal.RankedS qualified as RS
import Data.Bifunctor (second)
import Data.Bits
import Data.Int
import Data.List (sort)
import Data.Vector.Storable qualified as VS
import Data.Vector.Storable.Mutable qualified as VSM
import Foreign.C.Types
import Foreign.Marshal.Alloc (alloca)
import Foreign.Ptr
import Foreign.Storable (Storable(sizeOf), peek, poke)
import GHC.TypeLits
import GHC.TypeNats qualified as TypeNats
import Language.Haskell.TH
import System.IO.Unsafe
import Data.Array.Mixed.Internal.Arith.Foreign
import Data.Array.Mixed.Internal.Arith.Lists
import Data.Array.Mixed.Types (fromSNat')
-- TODO: need to sort strides for reduction-like functions so that the C inner-loop specialisation has some chance of working even after transposition
-- TODO: test all the cases of this thing with various input strides
liftVEltwise1 :: (Storable a, Storable b)
=> SNat n
-> (VS.Vector a -> VS.Vector b)
-> RS.Array n a -> RS.Array n b
liftVEltwise1 SNat f arr@(RS.A (RG.A sh (OI.T strides offset vec)))
| Just (blockOff, blockSz) <- stridesDense sh offset strides =
let vec' = f (VS.slice blockOff blockSz vec)
in RS.A (RG.A sh (OI.T strides (offset - blockOff) vec'))
| otherwise = RS.fromVector sh (f (RS.toVector arr))
-- TODO: test all the cases of this thing with various input strides
liftVEltwise2 :: (Storable a, Storable b, Storable c)
=> SNat n
-> (Either a (VS.Vector a) -> Either b (VS.Vector b) -> VS.Vector c)
-> RS.Array n a -> RS.Array n b -> RS.Array n c
liftVEltwise2 SNat f
arr1@(RS.A (RG.A sh1 (OI.T strides1 offset1 vec1)))
arr2@(RS.A (RG.A sh2 (OI.T strides2 offset2 vec2)))
| sh1 /= sh2 = error $ "liftVEltwise2: shapes unequal: " ++ show sh1 ++ " vs " ++ show sh2
| product sh1 == 0 = RS.A (RG.A sh1 (OI.T (0 <$ strides1) 0 VS.empty))
| otherwise = case (stridesDense sh1 offset1 strides1, stridesDense sh2 offset2 strides2) of
(Just (_, 1), Just (_, 1)) -> -- both are a (potentially replicated) scalar; just apply f to the scalars
let vec' = f (Left (vec1 VS.! offset1)) (Left (vec2 VS.! offset2))
in RS.A (RG.A sh1 (OI.T strides1 0 vec'))
(Just (_, 1), Just (blockOff, blockSz)) -> -- scalar * dense
RS.A (RG.A sh1 (OI.T strides2 (offset2 - blockOff)
(f (Left (vec1 VS.! offset1)) (Right (VS.slice blockOff blockSz vec2)))))
(Just (blockOff, blockSz), Just (_, 1)) -> -- dense * scalar
RS.A (RG.A sh1 (OI.T strides1 (offset1 - blockOff)
(f (Right (VS.slice blockOff blockSz vec1)) (Left (vec2 VS.! offset2)))))
(Just (blockOff1, blockSz1), Just (blockOff2, blockSz2))
| blockSz1 == blockSz2 -- not sure if this check is necessary, might be implied by the below
, strides1 == strides2
-> -- dense * dense but the strides match
RS.A (RG.A sh1 (OI.T strides1 (offset1 - blockOff1)
(f (Right (VS.slice blockOff1 blockSz1 vec1)) (Right (VS.slice blockOff2 blockSz2 vec2)))))
(_, _) -> -- fallback case
RS.fromVector sh1 (f (Right (RS.toVector arr1)) (Right (RS.toVector arr2)))
-- | Given shape vector, offset and stride vector, check whether this virtual
-- vector uses a dense subarray of its backing array. If so, the first index
-- and the number of elements in this subarray is returned.
-- This excludes any offset.
stridesDense :: [Int] -> Int -> [Int] -> Maybe (Int, Int)
stridesDense sh offset _ | any (<= 0) sh = Just (offset, 0)
stridesDense sh offsetNeg stridesNeg =
-- First reverse all dimensions with negative stride, so that the first used
-- value is at 'offset' and the rest is >= offset.
let (offset, strides) = flipReverseds sh offsetNeg stridesNeg
in -- sort dimensions on their stride, ascending, dropping any zero strides
case filter ((/= 0) . fst) (sort (zip strides sh)) of
[] -> Just (offset, 1)
(1, n) : pairs -> (offset,) <$> checkCover n pairs
_ -> Nothing -- if the smallest stride is not 1, it will never be dense
where
-- Given size of currently densely covered region at beginning of the
-- array and the remaining (stride, size) pairs with all strides >=1,
-- return whether this all together covers a dense prefix of the array. If
-- it does, return the number of elements in this prefix.
checkCover :: Int -> [(Int, Int)] -> Maybe Int
checkCover block [] = Just block
checkCover block ((s, n) : pairs) = guard (s <= block) >> checkCover (max block (n * s)) pairs
-- Given shape, offset and strides, returns new (offset, strides) such that all strides are >=0
flipReverseds :: [Int] -> Int -> [Int] -> (Int, [Int])
flipReverseds [] off [] = (off, [])
flipReverseds (n : sh') off (s : str')
| s >= 0 = second (s :) (flipReverseds sh' off str')
| otherwise =
let off' = off + (n - 1) * s
in second ((-s) :) (flipReverseds sh' off' str')
flipReverseds _ _ _ = error "flipReverseds: invalid arguments"
{-# NOINLINE vectorOp1 #-}
vectorOp1 :: forall a b. Storable a
=> (Ptr a -> Ptr b)
-> (Int64 -> Ptr b -> Ptr b -> IO ())
-> VS.Vector a -> VS.Vector a
vectorOp1 ptrconv f v = unsafePerformIO $ do
outv <- VSM.unsafeNew (VS.length v)
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith v $ \pv ->
f (fromIntegral (VS.length v)) (ptrconv poutv) (ptrconv pv)
VS.unsafeFreeze outv
-- | If two vectors are given, assumes that they have the same length.
{-# NOINLINE vectorOp2 #-}
vectorOp2 :: forall a b. Storable a
=> (a -> b)
-> (Ptr a -> Ptr b)
-> (a -> a -> a)
-> (Int64 -> Ptr b -> b -> Ptr b -> IO ()) -- sv
-> (Int64 -> Ptr b -> Ptr b -> b -> IO ()) -- vs
-> (Int64 -> Ptr b -> Ptr b -> Ptr b -> IO ()) -- vv
-> Either a (VS.Vector a) -> Either a (VS.Vector a) -> VS.Vector a
vectorOp2 valconv ptrconv fss fsv fvs fvv = \cases
(Left x) (Left y) -> VS.singleton (fss x y)
(Left x) (Right vy) ->
unsafePerformIO $ do
outv <- VSM.unsafeNew (VS.length vy)
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith vy $ \pvy ->
fsv (fromIntegral (VS.length vy)) (ptrconv poutv) (valconv x) (ptrconv pvy)
VS.unsafeFreeze outv
(Right vx) (Left y) ->
unsafePerformIO $ do
outv <- VSM.unsafeNew (VS.length vx)
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith vx $ \pvx ->
fvs (fromIntegral (VS.length vx)) (ptrconv poutv) (ptrconv pvx) (valconv y)
VS.unsafeFreeze outv
(Right vx) (Right vy)
| VS.length vx == VS.length vy ->
unsafePerformIO $ do
outv <- VSM.unsafeNew (VS.length vx)
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith vx $ \pvx ->
VS.unsafeWith vy $ \pvy ->
fvv (fromIntegral (VS.length vx)) (ptrconv poutv) (ptrconv pvx) (ptrconv pvy)
VS.unsafeFreeze outv
| otherwise -> error $ "vectorOp: unequal lengths: " ++ show (VS.length vx) ++ " /= " ++ show (VS.length vy)
-- TODO: test handling of negative strides
-- | Reduce along the inner dimension
{-# NOINLINE vectorRedInnerOp #-}
vectorRedInnerOp :: forall a b n. (Num a, Storable a)
=> SNat n
-> (a -> b)
-> (Ptr a -> Ptr b)
-> (Int64 -> Ptr b -> b -> Ptr b -> IO ()) -- ^ scale by constant
-> (Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ reduction kernel
-> RS.Array (n + 1) a -> RS.Array n a
vectorRedInnerOp sn@SNat valconv ptrconv fscale fred (RS.A (RG.A sh (OI.T strides offset vec)))
| null sh = error "unreachable"
| last sh <= 0 = RS.stretch (init sh) (RS.fromList (1 <$ init sh) [0])
| any (<= 0) (init sh) = RS.A (RG.A (init sh) (OI.T (0 <$ init strides) 0 VS.empty))
-- now the input array is nonempty
| last sh == 1 = RS.A (RG.A (init sh) (OI.T (init strides) offset vec))
| last strides == 0 =
liftVEltwise1 sn
(vectorOp1 id (\n pout px -> fscale n (ptrconv pout) (valconv (fromIntegral (last sh))) (ptrconv px)))
(RS.A (RG.A (init sh) (OI.T (init strides) offset vec)))
-- now there is useful work along the inner dimension
| otherwise =
let -- replicated dimensions: dimensions with zero stride. The reduction
-- kernel need not concern itself with those (and in fact has a
-- precondition that there are no such dimensions in its input).
replDims = map (== 0) strides
-- filter out replicated dimensions
(shF, stridesF) = unzip [(n, s) | (n, s, False) <- zip3 sh strides replDims]
-- replace replicated dimensions with ones
shOnes = zipWith (\n repl -> if repl then 1 else n) sh replDims
ndimsF = length shF -- > 0, otherwise `last strides == 0`
-- reversed dimensions: dimensions with negative stride. Reversal is
-- irrelevant for a reduction, and indeed the kernel has a
-- precondition that there are no such dimensions.
revDims = map (< 0) stridesF
stridesR = map abs stridesF
offsetR = offset + sum (zipWith3 (\rev n s -> if rev then (n - 1) * s else 0) revDims shF stridesF)
-- The *R values give an array with strides all > 0, hence the
-- left-most element is at offsetR.
in unsafePerformIO $ do
outvR <- VSM.unsafeNew (product (init shF))
VSM.unsafeWith outvR $ \poutvR ->
VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral shF)) $ \pshF ->
VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral stridesR)) $ \pstridesR ->
VS.unsafeWith (VS.slice offsetR (VS.length vec - offsetR) vec) $ \pvecR ->
fred (fromIntegral ndimsF) (ptrconv poutvR) pshF pstridesR (ptrconv pvecR)
TypeNats.withSomeSNat (fromIntegral (ndimsF - 1)) $ \(SNat :: SNat lenFm1) ->
RS.stretch (init sh) -- replicate to original shape
. RS.reshape (init shOnes) -- add 1-sized dimensions where the original was replicated
. RS.rev (map fst (filter snd (zip [0..] revDims))) -- re-reverse the correct dimensions
. RS.fromVector @_ @lenFm1 (init shF) -- the partially-reversed result array
<$> VS.unsafeFreeze outvR
-- TODO: test handling of negative strides
-- | Reduce full array
{-# NOINLINE vectorRedFullOp #-}
vectorRedFullOp :: forall a b n. (Num a, Storable a)
=> SNat n
-> (a -> Int -> a)
-> (b -> a)
-> (Ptr a -> Ptr b)
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO b) -- ^ reduction kernel
-> RS.Array n a -> a
vectorRedFullOp _ scaleval valbackconv ptrconv fred (RS.A (RG.A sh (OI.T strides offset vec)))
| null sh = vec VS.! offset -- 0D array has one element
| any (<= 0) sh = 0
-- now the input array is nonempty
| all (== 0) strides = fromIntegral (product sh) * vec VS.! offset
-- now there is at least one non-replicated dimension
| otherwise =
let -- replicated dimensions: dimensions with zero stride. The reduction
-- kernel need not concern itself with those (and in fact has a
-- precondition that there are no such dimensions in its input).
replDims = map (== 0) strides
-- filter out replicated dimensions
(shF, stridesF) = unzip [(n, s) | (n, s, False) <- zip3 sh strides replDims]
ndimsF = length shF -- > 0, otherwise `all (== 0) strides`
-- we should scale up the output this many times to account for the replicated dimensions
multiplier = product [n | (n, True) <- zip sh replDims]
-- reversed dimensions: dimensions with negative stride. Reversal is
-- irrelevant for a reduction, and indeed the kernel has a
-- precondition that there are no such dimensions.
revDims = map (< 0) stridesF
stridesR = map abs stridesF
offsetR = offset + sum (zipWith3 (\rev n s -> if rev then (n - 1) * s else 0) revDims shF stridesF)
-- The *R values give an array with strides all > 0, hence the
-- left-most element is at offsetR.
in unsafePerformIO $ do
VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral shF)) $ \pshF ->
VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral stridesR)) $ \pstridesR ->
VS.unsafeWith (VS.slice offsetR (VS.length vec - offsetR) vec) $ \pvecR ->
(`scaleval` fromIntegral multiplier) . valbackconv
<$> fred (fromIntegral ndimsF) pshF pstridesR (ptrconv pvecR)
-- TODO: test this function
-- | Find extremum (minindex ("argmin") or maxindex) in full array
{-# NOINLINE vectorExtremumOp #-}
vectorExtremumOp :: forall a b n. Storable a
=> (Ptr a -> Ptr b)
-> (Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ extremum kernel
-> RS.Array n a -> [Int] -- result length: n
vectorExtremumOp ptrconv fextrem (RS.A (RG.A sh (OI.T strides offset vec)))
| null sh = []
| any (<= 0) sh = error "Extremum (minindex/maxindex): empty array"
-- now the input array is nonempty
| all (== 0) strides = 0 <$ sh
-- now there is at least one non-replicated dimension
| otherwise =
let -- replicated dimensions: dimensions with zero stride. The extremum
-- kernel need not concern itself with those (and in fact has a
-- precondition that there are no such dimensions in its input).
replDims = map (== 0) strides
-- filter out replicated dimensions
(shF, stridesF) = unzip [(n, s) | (n, s, False) <- zip3 sh strides replDims]
ndimsF = length shF -- > 0, because not all strides were <=0
-- un-reverse reversed dimensions
revDims = map (< 0) stridesF
stridesR = map abs stridesF
offsetR = offset + sum (zipWith3 (\rev n s -> if rev then (n - 1) * s else 0) revDims shF stridesF)
-- function to insert zeros in replicated-out dimensions
insertZeros :: [Bool] -> [Int] -> [Int]
insertZeros [] idx = idx
insertZeros (True : repls) idx = 0 : insertZeros repls idx
insertZeros (False : repls) (i : idx) = i : insertZeros repls idx
insertZeros (_:_) [] = error "unreachable"
in unsafePerformIO $ do
outvR <- VSM.unsafeNew (length shF)
VSM.unsafeWith outvR $ \poutvR ->
VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral shF)) $ \pshF ->
VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral stridesR)) $ \pstridesR ->
VS.unsafeWith (VS.slice offsetR (VS.length vec - offsetR) vec) $ \pvecR ->
fextrem poutvR (fromIntegral ndimsF) pshF pstridesR (ptrconv pvecR)
insertZeros replDims
. zipWith3 (\rev n i -> if rev then n - 1 - i else i) revDims shF -- re-reverse the reversed dimensions
. map (fromIntegral @Int64 @Int)
. VS.toList
<$> VS.unsafeFreeze outvR
vectorDotprodInnerOp :: forall a b n. (Num a, Storable a)
=> SNat n
-> (a -> b)
-> (Ptr a -> Ptr b)
-> (SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a) -- ^ elementwise multiplication
-> (Int64 -> Ptr b -> b -> Ptr b -> IO ()) -- ^ scale by constant
-> (Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ reduction kernel
-> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ()) -- ^ dotprod kernel
-> RS.Array (n + 1) a -> RS.Array (n + 1) a -> RS.Array n a
vectorDotprodInnerOp sn@SNat valconv ptrconv fmul fscale fred fdotinner
arr1@(RS.A (RG.A sh1 (OI.T strides1 offset1 vec1)))
arr2@(RS.A (RG.A sh2 (OI.T strides2 offset2 vec2)))
| null sh1 || null sh2 = error "unreachable"
| sh1 /= sh2 = error $ "vectorDotprodInnerOp: shapes unequal: " ++ show sh1 ++ " vs " ++ show sh2
| last sh1 <= 0 = RS.stretch (init sh1) (RS.fromList (1 <$ init sh1) [0])
| any (<= 0) (init sh1) = RS.A (RG.A (init sh1) (OI.T (0 <$ init strides1) 0 VS.empty))
-- now the input arrays are nonempty
| last sh1 == 1 = fmul sn (RS.reshape (init sh1) arr1) (RS.reshape (init sh1) arr2)
| last strides1 == 0 =
fmul sn
(RS.A (RG.A (init sh1) (OI.T (init strides1) offset1 vec1)))
(vectorRedInnerOp sn valconv ptrconv fscale fred arr2)
| last strides2 == 0 =
fmul sn
(vectorRedInnerOp sn valconv ptrconv fscale fred arr1)
(RS.A (RG.A (init sh2) (OI.T (init strides2) offset2 vec2)))
-- now there is useful dotprod work along the inner dimension
| otherwise = unsafePerformIO $ do
let inrank = fromSNat' sn + 1
outv <- VSM.unsafeNew (product (init sh1))
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith (VS.fromListN inrank (map fromIntegral sh1)) $ \psh ->
VS.unsafeWith (VS.fromListN inrank (map fromIntegral strides1)) $ \pstrides1 ->
VS.unsafeWith vec1 $ \pvec1 ->
VS.unsafeWith (VS.fromListN inrank (map fromIntegral strides2)) $ \pstrides2 ->
VS.unsafeWith vec2 $ \pvec2 ->
fdotinner (fromIntegral @Int @Int64 inrank) psh (ptrconv poutv)
pstrides1 (ptrconv pvec1 `plusPtr` (sizeOf (undefined :: a) * offset1))
pstrides2 (ptrconv pvec2 `plusPtr` (sizeOf (undefined :: a) * offset2))
RS.fromVector @_ @n (init sh1) <$> VS.unsafeFreeze outv
{-# NOINLINE dotScalarVector #-}
dotScalarVector :: forall a b. (Num a, Storable a)
=> Int -> (Ptr a -> Ptr b)
-> (Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ reduction kernel
-> a -> VS.Vector a -> a
dotScalarVector len ptrconv fred scalar vec = unsafePerformIO $ do
alloca @a $ \pout -> do
alloca @Int64 $ \pshape -> do
poke pshape (fromIntegral @Int @Int64 len)
alloca @Int64 $ \pstride -> do
poke pstride 1
VS.unsafeWith vec $ \pvec ->
fred 1 (ptrconv pout) pshape pstride (ptrconv pvec)
res <- peek pout
return (scalar * res)
{-# NOINLINE dotVectorVector #-}
dotVectorVector :: Storable a => Int -> (b -> a) -> (Ptr a -> Ptr b)
-> (Int64 -> Ptr b -> Ptr b -> IO b) -- ^ dotprod kernel
-> VS.Vector a -> VS.Vector a -> a
dotVectorVector len valbackconv ptrconv fdot vec1 vec2 = unsafePerformIO $ do
VS.unsafeWith vec1 $ \pvec1 ->
VS.unsafeWith vec2 $ \pvec2 ->
valbackconv <$> fdot (fromIntegral @Int @Int64 len) (ptrconv pvec1) (ptrconv pvec2)
{-# NOINLINE dotVectorVectorStrided #-}
dotVectorVectorStrided :: Storable a => Int -> (b -> a) -> (Ptr a -> Ptr b)
-> (Int64 -> Int64 -> Int64 -> Ptr b -> Int64 -> Int64 -> Ptr b -> IO b) -- ^ dotprod kernel
-> Int -> Int -> VS.Vector a
-> Int -> Int -> VS.Vector a
-> a
dotVectorVectorStrided len valbackconv ptrconv fdot offset1 stride1 vec1 offset2 stride2 vec2 = unsafePerformIO $ do
VS.unsafeWith vec1 $ \pvec1 ->
VS.unsafeWith vec2 $ \pvec2 ->
valbackconv <$> fdot (fromIntegral @Int @Int64 len)
(fromIntegral offset1) (fromIntegral stride1) (ptrconv pvec1)
(fromIntegral offset2) (fromIntegral stride2) (ptrconv pvec2)
flipOp :: (Int64 -> Ptr a -> a -> Ptr a -> IO ())
-> Int64 -> Ptr a -> Ptr a -> a -> IO ()
flipOp f n out v s = f n out s v
$(fmap concat . forM typesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (aboName arithop ++ "Vector" ++ nameBase (atType arithtype))
cnamebase = "c_binary_" ++ atCName arithtype
c_ss = varE (aboNumOp arithop)
c_sv = varE (mkName (cnamebase ++ "_sv")) `appE` litE (integerL (fromIntegral (aboEnum arithop)))
c_vs = varE (mkName (cnamebase ++ "_vs")) `appE` litE (integerL (fromIntegral (aboEnum arithop)))
c_vv = varE (mkName (cnamebase ++ "_vv")) `appE` litE (integerL (fromIntegral (aboEnum arithop)))
sequence [SigD name <$>
[t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp -> RS.Array n $ttyp |]
,do body <- [| \sn -> liftVEltwise2 sn (vectorOp2 id id $c_ss $c_sv $c_vs $c_vv) |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM floatTypesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (afboName arithop ++ "Vector" ++ nameBase (atType arithtype))
cnamebase = "c_fbinary_" ++ atCName arithtype
c_ss = varE (afboNumOp arithop)
c_sv = varE (mkName (cnamebase ++ "_sv")) `appE` litE (integerL (fromIntegral (afboEnum arithop)))
c_vs = varE (mkName (cnamebase ++ "_vs")) `appE` litE (integerL (fromIntegral (afboEnum arithop)))
c_vv = varE (mkName (cnamebase ++ "_vv")) `appE` litE (integerL (fromIntegral (afboEnum arithop)))
sequence [SigD name <$>
[t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp -> RS.Array n $ttyp |]
,do body <- [| \sn -> liftVEltwise2 sn (vectorOp2 id id $c_ss $c_sv $c_vs $c_vv) |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM typesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (auoName arithop ++ "Vector" ++ nameBase (atType arithtype))
c_op = varE (mkName ("c_unary_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (auoEnum arithop)))
sequence [SigD name <$>
[t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp |]
,do body <- [| \sn -> liftVEltwise1 sn (vectorOp1 id $c_op) |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM floatTypesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (afuoName arithop ++ "Vector" ++ nameBase (atType arithtype))
c_op = varE (mkName ("c_funary_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (afuoEnum arithop)))
sequence [SigD name <$>
[t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp |]
,do body <- [| \sn -> liftVEltwise1 sn (vectorOp1 id $c_op) |]
return $ FunD name [Clause [] (NormalB body) []]])
mulWithInt :: Num a => a -> Int -> a
mulWithInt a i = a * fromIntegral i
$(fmap concat . forM typesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let scaleVar = case arithop of
RO_SUM -> varE 'mulWithInt
RO_PRODUCT -> varE '(^)
let name1 = mkName (aroName arithop ++ "1Vector" ++ nameBase (atType arithtype))
namefull = mkName (aroName arithop ++ "FullVector" ++ nameBase (atType arithtype))
c_op1 = varE (mkName ("c_reduce1_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum arithop)))
c_opfull = varE (mkName ("c_reducefull_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum arithop)))
c_scale_op = varE (mkName ("c_binary_" ++ atCName arithtype ++ "_sv")) `appE` litE (integerL (fromIntegral (aboEnum BO_MUL)))
sequence [SigD name1 <$>
[t| forall n. SNat n -> RS.Array (n + 1) $ttyp -> RS.Array n $ttyp |]
,do body <- [| \sn -> vectorRedInnerOp sn id id $c_scale_op $c_op1 |]
return $ FunD name1 [Clause [] (NormalB body) []]
,SigD namefull <$>
[t| forall n. SNat n -> RS.Array n $ttyp -> $ttyp |]
,do body <- [| \sn -> vectorRedFullOp sn $scaleVar id id $c_opfull |]
return $ FunD namefull [Clause [] (NormalB body) []]
])
$(fmap concat . forM typesList $ \arithtype ->
fmap concat . forM ["min", "max"] $ \fname -> do
let ttyp = conT (atType arithtype)
name = mkName (fname ++ "indexVector" ++ nameBase (atType arithtype))
c_op = varE (mkName ("c_extremum_" ++ fname ++ "_" ++ atCName arithtype))
sequence [SigD name <$>
[t| forall n. RS.Array n $ttyp -> [Int] |]
,do body <- [| vectorExtremumOp id $c_op |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM typesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
name = mkName ("dotprodinnerVector" ++ nameBase (atType arithtype))
c_op = varE (mkName ("c_dotprodinner_" ++ atCName arithtype))
mul_op = varE (mkName ("mulVector" ++ nameBase (atType arithtype)))
c_scale_op = varE (mkName ("c_binary_" ++ atCName arithtype ++ "_sv")) `appE` litE (integerL (fromIntegral (aboEnum BO_MUL)))
c_red_op = varE (mkName ("c_reduce1_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum RO_SUM)))
sequence [SigD name <$>
[t| forall n. SNat n -> RS.Array (n + 1) $ttyp -> RS.Array (n + 1) $ttyp -> RS.Array n $ttyp |]
,do body <- [| \sn -> vectorDotprodInnerOp sn id id $mul_op $c_scale_op $c_red_op $c_op |]
return $ FunD name [Clause [] (NormalB body) []]])
-- This branch is ostensibly a runtime branch, but will (hopefully) be
-- constant-folded away by GHC.
intWidBranch1 :: forall i n. (FiniteBits i, Storable i)
=> (Int64 -> Ptr Int32 -> Ptr Int32 -> IO ())
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())
-> (SNat n -> RS.Array n i -> RS.Array n i)
intWidBranch1 f32 f64 sn
| finiteBitSize (undefined :: i) == 32 = liftVEltwise1 sn (vectorOp1 @i @Int32 castPtr f32)
| finiteBitSize (undefined :: i) == 64 = liftVEltwise1 sn (vectorOp1 @i @Int64 castPtr f64)
| otherwise = error "Unsupported Int width"
intWidBranch2 :: forall i n. (FiniteBits i, Storable i, Integral i)
=> (i -> i -> i) -- ss
-- int32
-> (Int64 -> Ptr Int32 -> Int32 -> Ptr Int32 -> IO ()) -- sv
-> (Int64 -> Ptr Int32 -> Ptr Int32 -> Int32 -> IO ()) -- vs
-> (Int64 -> Ptr Int32 -> Ptr Int32 -> Ptr Int32 -> IO ()) -- vv
-- int64
-> (Int64 -> Ptr Int64 -> Int64 -> Ptr Int64 -> IO ()) -- sv
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Int64 -> IO ()) -- vs
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ()) -- vv
-> (SNat n -> RS.Array n i -> RS.Array n i -> RS.Array n i)
intWidBranch2 ss sv32 vs32 vv32 sv64 vs64 vv64 sn
| finiteBitSize (undefined :: i) == 32 = liftVEltwise2 sn (vectorOp2 @i @Int32 fromIntegral castPtr ss sv32 vs32 vv32)
| finiteBitSize (undefined :: i) == 64 = liftVEltwise2 sn (vectorOp2 @i @Int64 fromIntegral castPtr ss sv64 vs64 vv64)
| otherwise = error "Unsupported Int width"
intWidBranchRed1 :: forall i n. (FiniteBits i, Storable i, Integral i)
=> -- int32
(Int64 -> Ptr Int32 -> Int32 -> Ptr Int32 -> IO ()) -- ^ scale by constant
-> (Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO ()) -- ^ reduction kernel
-- int64
-> (Int64 -> Ptr Int64 -> Int64 -> Ptr Int64 -> IO ()) -- ^ scale by constant
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ()) -- ^ reduction kernel
-> (SNat n -> RS.Array (n + 1) i -> RS.Array n i)
intWidBranchRed1 fsc32 fred32 fsc64 fred64 sn
| finiteBitSize (undefined :: i) == 32 = vectorRedInnerOp @i @Int32 sn fromIntegral castPtr fsc32 fred32
| finiteBitSize (undefined :: i) == 64 = vectorRedInnerOp @i @Int64 sn fromIntegral castPtr fsc64 fred64
| otherwise = error "Unsupported Int width"
intWidBranchRedFull :: forall i n. (FiniteBits i, Storable i, Integral i)
=> (i -> Int -> i) -- ^ scale op
-- int32
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO Int32) -- ^ reduction kernel
-- int64
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO Int64) -- ^ reduction kernel
-> (SNat n -> RS.Array n i -> i)
intWidBranchRedFull fsc fred32 fred64 sn
| finiteBitSize (undefined :: i) == 32 = vectorRedFullOp @i @Int32 sn fsc fromIntegral castPtr fred32
| finiteBitSize (undefined :: i) == 64 = vectorRedFullOp @i @Int64 sn fsc fromIntegral castPtr fred64
| otherwise = error "Unsupported Int width"
intWidBranchExtr :: forall i n. (FiniteBits i, Storable i, Integral i)
=> -- int32
(Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO ()) -- ^ extremum kernel
-- int64
-> (Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ()) -- ^ extremum kernel
-> (RS.Array n i -> [Int])
intWidBranchExtr fextr32 fextr64
| finiteBitSize (undefined :: i) == 32 = vectorExtremumOp @i @Int32 castPtr fextr32
| finiteBitSize (undefined :: i) == 64 = vectorExtremumOp @i @Int64 castPtr fextr64
| otherwise = error "Unsupported Int width"
intWidBranchDotprod :: forall i n. (FiniteBits i, Storable i, Integral i, NumElt i)
=> -- int32
(Int64 -> Ptr Int32 -> Int32 -> Ptr Int32 -> IO ()) -- ^ scale by constant
-> (Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO ()) -- ^ reduction kernel
-> (Int64 -> Ptr Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int32 -> IO ()) -- ^ dotprod kernel
-- int64
-> (Int64 -> Ptr Int64 -> Int64 -> Ptr Int64 -> IO ()) -- ^ scale by constant
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ()) -- ^ reduction kernel
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ()) -- ^ dotprod kernel
-> (SNat n -> RS.Array (n + 1) i -> RS.Array (n + 1) i -> RS.Array n i)
intWidBranchDotprod fsc32 fred32 fdot32 fsc64 fred64 fdot64 sn
| finiteBitSize (undefined :: i) == 32 = vectorDotprodInnerOp @i @Int32 sn fromIntegral castPtr numEltMul fsc32 fred32 fdot32
| finiteBitSize (undefined :: i) == 64 = vectorDotprodInnerOp @i @Int64 sn fromIntegral castPtr numEltMul fsc64 fred64 fdot64
| otherwise = error "Unsupported Int width"
class NumElt a where
numEltAdd :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
numEltSub :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
numEltMul :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
numEltNeg :: SNat n -> RS.Array n a -> RS.Array n a
numEltAbs :: SNat n -> RS.Array n a -> RS.Array n a
numEltSignum :: SNat n -> RS.Array n a -> RS.Array n a
numEltSum1Inner :: SNat n -> RS.Array (n + 1) a -> RS.Array n a
numEltProduct1Inner :: SNat n -> RS.Array (n + 1) a -> RS.Array n a
numEltSumFull :: SNat n -> RS.Array n a -> a
numEltProductFull :: SNat n -> RS.Array n a -> a
numEltMinIndex :: RS.Array n a -> [Int]
numEltMaxIndex :: RS.Array n a -> [Int]
numEltDotprodInner :: SNat n -> RS.Array (n + 1) a -> RS.Array (n + 1) a -> RS.Array n a
instance NumElt Int32 where
numEltAdd = addVectorInt32
numEltSub = subVectorInt32
numEltMul = mulVectorInt32
numEltNeg = negVectorInt32
numEltAbs = absVectorInt32
numEltSignum = signumVectorInt32
numEltSum1Inner = sum1VectorInt32
numEltProduct1Inner = product1VectorInt32
numEltSumFull = sumFullVectorInt32
numEltProductFull = productFullVectorInt32
numEltMinIndex = minindexVectorInt32
numEltMaxIndex = maxindexVectorInt32
numEltDotprodInner = dotprodinnerVectorInt32
instance NumElt Int64 where
numEltAdd = addVectorInt64
numEltSub = subVectorInt64
numEltMul = mulVectorInt64
numEltNeg = negVectorInt64
numEltAbs = absVectorInt64
numEltSignum = signumVectorInt64
numEltSum1Inner = sum1VectorInt64
numEltProduct1Inner = product1VectorInt64
numEltSumFull = sumFullVectorInt64
numEltProductFull = productFullVectorInt64
numEltMinIndex = minindexVectorInt64
numEltMaxIndex = maxindexVectorInt64
numEltDotprodInner = dotprodinnerVectorInt64
instance NumElt Float where
numEltAdd = addVectorFloat
numEltSub = subVectorFloat
numEltMul = mulVectorFloat
numEltNeg = negVectorFloat
numEltAbs = absVectorFloat
numEltSignum = signumVectorFloat
numEltSum1Inner = sum1VectorFloat
numEltProduct1Inner = product1VectorFloat
numEltSumFull = sumFullVectorFloat
numEltProductFull = productFullVectorFloat
numEltMinIndex = minindexVectorFloat
numEltMaxIndex = maxindexVectorFloat
numEltDotprodInner = dotprodinnerVectorFloat
instance NumElt Double where
numEltAdd = addVectorDouble
numEltSub = subVectorDouble
numEltMul = mulVectorDouble
numEltNeg = negVectorDouble
numEltAbs = absVectorDouble
numEltSignum = signumVectorDouble
numEltSum1Inner = sum1VectorDouble
numEltProduct1Inner = product1VectorDouble
numEltSumFull = sumFullVectorDouble
numEltProductFull = productFullVectorDouble
numEltMinIndex = minindexVectorDouble
numEltMaxIndex = maxindexVectorDouble
numEltDotprodInner = dotprodinnerVectorDouble
instance NumElt Int where
numEltAdd = intWidBranch2 @Int (+)
(c_binary_i32_sv (aboEnum BO_ADD)) (flipOp (c_binary_i32_sv (aboEnum BO_ADD))) (c_binary_i32_vv (aboEnum BO_ADD))
(c_binary_i64_sv (aboEnum BO_ADD)) (flipOp (c_binary_i64_sv (aboEnum BO_ADD))) (c_binary_i64_vv (aboEnum BO_ADD))
numEltSub = intWidBranch2 @Int (-)
(c_binary_i32_sv (aboEnum BO_SUB)) (flipOp (c_binary_i32_sv (aboEnum BO_SUB))) (c_binary_i32_vv (aboEnum BO_SUB))
(c_binary_i64_sv (aboEnum BO_SUB)) (flipOp (c_binary_i64_sv (aboEnum BO_SUB))) (c_binary_i64_vv (aboEnum BO_SUB))
numEltMul = intWidBranch2 @Int (*)
(c_binary_i32_sv (aboEnum BO_MUL)) (flipOp (c_binary_i32_sv (aboEnum BO_MUL))) (c_binary_i32_vv (aboEnum BO_MUL))
(c_binary_i64_sv (aboEnum BO_MUL)) (flipOp (c_binary_i64_sv (aboEnum BO_MUL))) (c_binary_i64_vv (aboEnum BO_MUL))
numEltNeg = intWidBranch1 @Int (c_unary_i32 (auoEnum UO_NEG)) (c_unary_i64 (auoEnum UO_NEG))
numEltAbs = intWidBranch1 @Int (c_unary_i32 (auoEnum UO_ABS)) (c_unary_i64 (auoEnum UO_ABS))
numEltSignum = intWidBranch1 @Int (c_unary_i32 (auoEnum UO_SIGNUM)) (c_unary_i64 (auoEnum UO_SIGNUM))
numEltSum1Inner = intWidBranchRed1 @Int
(c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce1_i32 (aroEnum RO_SUM))
(c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce1_i64 (aroEnum RO_SUM))
numEltProduct1Inner = intWidBranchRed1 @Int
(c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce1_i32 (aroEnum RO_PRODUCT))
(c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce1_i64 (aroEnum RO_PRODUCT))
numEltSumFull = intWidBranchRedFull @Int (*) (c_reducefull_i32 (aroEnum RO_SUM)) (c_reducefull_i64 (aroEnum RO_SUM))
numEltProductFull = intWidBranchRedFull @Int (^) (c_reducefull_i32 (aroEnum RO_PRODUCT)) (c_reducefull_i64 (aroEnum RO_PRODUCT))
numEltMinIndex = intWidBranchExtr @Int c_extremum_min_i32 c_extremum_min_i64
numEltMaxIndex = intWidBranchExtr @Int c_extremum_max_i32 c_extremum_max_i64
numEltDotprodInner = intWidBranchDotprod @Int (c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce1_i32 (aroEnum RO_SUM)) c_dotprodinner_i32
(c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce1_i64 (aroEnum RO_SUM)) c_dotprodinner_i64
instance NumElt CInt where
numEltAdd = intWidBranch2 @CInt (+)
(c_binary_i32_sv (aboEnum BO_ADD)) (flipOp (c_binary_i32_sv (aboEnum BO_ADD))) (c_binary_i32_vv (aboEnum BO_ADD))
(c_binary_i64_sv (aboEnum BO_ADD)) (flipOp (c_binary_i64_sv (aboEnum BO_ADD))) (c_binary_i64_vv (aboEnum BO_ADD))
numEltSub = intWidBranch2 @CInt (-)
(c_binary_i32_sv (aboEnum BO_SUB)) (flipOp (c_binary_i32_sv (aboEnum BO_SUB))) (c_binary_i32_vv (aboEnum BO_SUB))
(c_binary_i64_sv (aboEnum BO_SUB)) (flipOp (c_binary_i64_sv (aboEnum BO_SUB))) (c_binary_i64_vv (aboEnum BO_SUB))
numEltMul = intWidBranch2 @CInt (*)
(c_binary_i32_sv (aboEnum BO_MUL)) (flipOp (c_binary_i32_sv (aboEnum BO_MUL))) (c_binary_i32_vv (aboEnum BO_MUL))
(c_binary_i64_sv (aboEnum BO_MUL)) (flipOp (c_binary_i64_sv (aboEnum BO_MUL))) (c_binary_i64_vv (aboEnum BO_MUL))
numEltNeg = intWidBranch1 @CInt (c_unary_i32 (auoEnum UO_NEG)) (c_unary_i64 (auoEnum UO_NEG))
numEltAbs = intWidBranch1 @CInt (c_unary_i32 (auoEnum UO_ABS)) (c_unary_i64 (auoEnum UO_ABS))
numEltSignum = intWidBranch1 @CInt (c_unary_i32 (auoEnum UO_SIGNUM)) (c_unary_i64 (auoEnum UO_SIGNUM))
numEltSum1Inner = intWidBranchRed1 @CInt
(c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce1_i32 (aroEnum RO_SUM))
(c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce1_i64 (aroEnum RO_SUM))
numEltProduct1Inner = intWidBranchRed1 @CInt
(c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce1_i32 (aroEnum RO_PRODUCT))
(c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce1_i64 (aroEnum RO_PRODUCT))
numEltSumFull = intWidBranchRedFull @CInt mulWithInt (c_reducefull_i32 (aroEnum RO_SUM)) (c_reducefull_i64 (aroEnum RO_SUM))
numEltProductFull = intWidBranchRedFull @CInt (^) (c_reducefull_i32 (aroEnum RO_PRODUCT)) (c_reducefull_i64 (aroEnum RO_PRODUCT))
numEltMinIndex = intWidBranchExtr @CInt c_extremum_min_i32 c_extremum_min_i64
numEltMaxIndex = intWidBranchExtr @CInt c_extremum_max_i32 c_extremum_max_i64
numEltDotprodInner = intWidBranchDotprod @CInt (c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce1_i32 (aroEnum RO_SUM)) c_dotprodinner_i32
(c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce1_i64 (aroEnum RO_SUM)) c_dotprodinner_i64
class FloatElt a where
floatEltDiv :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
floatEltPow :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
floatEltLogbase :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
floatEltRecip :: SNat n -> RS.Array n a -> RS.Array n a
floatEltExp :: SNat n -> RS.Array n a -> RS.Array n a
floatEltLog :: SNat n -> RS.Array n a -> RS.Array n a
floatEltSqrt :: SNat n -> RS.Array n a -> RS.Array n a
floatEltSin :: SNat n -> RS.Array n a -> RS.Array n a
floatEltCos :: SNat n -> RS.Array n a -> RS.Array n a
floatEltTan :: SNat n -> RS.Array n a -> RS.Array n a
floatEltAsin :: SNat n -> RS.Array n a -> RS.Array n a
floatEltAcos :: SNat n -> RS.Array n a -> RS.Array n a
floatEltAtan :: SNat n -> RS.Array n a -> RS.Array n a
floatEltSinh :: SNat n -> RS.Array n a -> RS.Array n a
floatEltCosh :: SNat n -> RS.Array n a -> RS.Array n a
floatEltTanh :: SNat n -> RS.Array n a -> RS.Array n a
floatEltAsinh :: SNat n -> RS.Array n a -> RS.Array n a
floatEltAcosh :: SNat n -> RS.Array n a -> RS.Array n a
floatEltAtanh :: SNat n -> RS.Array n a -> RS.Array n a
floatEltLog1p :: SNat n -> RS.Array n a -> RS.Array n a
floatEltExpm1 :: SNat n -> RS.Array n a -> RS.Array n a
floatEltLog1pexp :: SNat n -> RS.Array n a -> RS.Array n a
floatEltLog1mexp :: SNat n -> RS.Array n a -> RS.Array n a
instance FloatElt Float where
floatEltDiv = divVectorFloat
floatEltPow = powVectorFloat
floatEltLogbase = logbaseVectorFloat
floatEltRecip = recipVectorFloat
floatEltExp = expVectorFloat
floatEltLog = logVectorFloat
floatEltSqrt = sqrtVectorFloat
floatEltSin = sinVectorFloat
floatEltCos = cosVectorFloat
floatEltTan = tanVectorFloat
floatEltAsin = asinVectorFloat
floatEltAcos = acosVectorFloat
floatEltAtan = atanVectorFloat
floatEltSinh = sinhVectorFloat
floatEltCosh = coshVectorFloat
floatEltTanh = tanhVectorFloat
floatEltAsinh = asinhVectorFloat
floatEltAcosh = acoshVectorFloat
floatEltAtanh = atanhVectorFloat
floatEltLog1p = log1pVectorFloat
floatEltExpm1 = expm1VectorFloat
floatEltLog1pexp = log1pexpVectorFloat
floatEltLog1mexp = log1mexpVectorFloat
instance FloatElt Double where
floatEltDiv = divVectorDouble
floatEltPow = powVectorDouble
floatEltLogbase = logbaseVectorDouble
floatEltRecip = recipVectorDouble
floatEltExp = expVectorDouble
floatEltLog = logVectorDouble
floatEltSqrt = sqrtVectorDouble
floatEltSin = sinVectorDouble
floatEltCos = cosVectorDouble
floatEltTan = tanVectorDouble
floatEltAsin = asinVectorDouble
floatEltAcos = acosVectorDouble
floatEltAtan = atanVectorDouble
floatEltSinh = sinhVectorDouble
floatEltCosh = coshVectorDouble
floatEltTanh = tanhVectorDouble
floatEltAsinh = asinhVectorDouble
floatEltAcosh = acoshVectorDouble
floatEltAtanh = atanhVectorDouble
floatEltLog1p = log1pVectorDouble
floatEltExpm1 = expm1VectorDouble
floatEltLog1pexp = log1pexpVectorDouble
floatEltLog1mexp = log1mexpVectorDouble
|