diff options
| -rw-r--r-- | aberth/aberth_kernel.fut | 70 | 
1 files changed, 35 insertions, 35 deletions
| diff --git a/aberth/aberth_kernel.fut b/aberth/aberth_kernel.fut index 58b8838..f09db56 100644 --- a/aberth/aberth_kernel.fut +++ b/aberth/aberth_kernel.fut @@ -1,53 +1,53 @@  import "lib/github.com/diku-dk/complex/complex"  import "lib/github.com/diku-dk/cpprandom/random" -module uniform_real = uniform_real_distribution f64 minstd_rand  module rand_engine = minstd_rand +module uniform_real = uniform_real_distribution f32 rand_engine -module c64 = mk_complex f64 -type complex = c64.complex +module cplx = mk_complex f32 +type complex = cplx.complex -let N = 20i32 +let N = 18i32  let PolyN = N + 1 -type poly = [PolyN]f64 +type poly = [PolyN]f32  -- First element of pair steps fastest  let iota2 (n: i32) (m: i32): [](i32, i32) =      flatten (map (\y -> map (\x -> (x, y)) (iota n)) (iota m))  let evaln_c (p: poly) (nterms: i32) (pt: complex): complex = -    foldr (\coef accum -> c64.mk_re coef c64.+ pt c64.* accum) -          (c64.mk_re p[nterms-1]) (take (nterms - 1) p) +    foldr (\coef accum -> cplx.mk_re coef cplx.+ pt cplx.* accum) +          (cplx.mk_re p[nterms-1]) (take (nterms - 1) p)  let eval_c (p: poly) (pt: complex): complex = evaln_c p (length p) pt -let evaln_d (p: poly) (nterms: i32) (pt: f64): f64 = +let evaln_d (p: poly) (nterms: i32) (pt: f32): f32 =      foldr (\coef accum -> coef + pt * accum)            p[nterms-1] (take (nterms - 1) p) -let eval_d (p: poly) (pt: f64): f64 = evaln_d p (length p) pt +let eval_d (p: poly) (pt: f32): f32 = evaln_d p (length p) pt  let derivative (p: poly): *poly =  -    map (\(i, v) -> f64.i32 i * v) (zip (1..<PolyN) (drop 1 p)) ++ [0] +    map (\(i, v) -> f32.i32 i * v) (zip (1..<PolyN) (drop 1 p)) ++ [0]  -- Cauchy's bound: https://en.wikipedia.org/wiki/Geometrical_properties_of_polynomial_roots#Lagrange's_and_Cauchy's_bounds -let max_root_norm (p: poly): f64 = -    1 + f64.maximum (map (\coef -> f64.abs (coef / p[PolyN-1])) p) +let max_root_norm (p: poly): f32 = +    1 + f32.maximum (map (\coef -> f32.abs (coef / p[PolyN-1])) p)  module aberth = {      type approx = [N]complex      -- bound is 's' in the stop condition formulated at p.189-190 of      -- https://link.springer.com/article/10.1007%2FBF02207694 -    type context = {p: poly, deriv: poly, bound: poly, radius: f64} +    type context = {p: poly, deriv: poly, bound: poly, radius: f32} -    let gen_coord (r: f64) (rng: *rand_engine.rng): *(rand_engine.rng, f64) = +    let gen_coord (r: f32) (rng: *rand_engine.rng): *(rand_engine.rng, f32) =          uniform_real.rand (-r, r) rng -    let gen_coord_c (r: f64) (rng: rand_engine.rng): (rand_engine.rng, complex) = +    let gen_coord_c (r: f32) (rng: rand_engine.rng): (rand_engine.rng, complex) =          let (rng, x) = gen_coord r rng          let (rng, y) = gen_coord r rng -        in (rng, c64.mk x y) +        in (rng, cplx.mk x y)      let generate (ctx: context) (rng: *rand_engine.rng): *(rand_engine.rng, approx) =          let rngs = rand_engine.split_rng N rng @@ -56,7 +56,7 @@ module aberth = {          in (rng, approx)      let compute_bound_poly (p: poly): *poly = -        map2 (\coef i -> f64.abs coef * f64.i32 (4 * i + 1)) p (0..<PolyN) +        map2 (\coef i -> f32.abs coef * f32.i32 (4 * i + 1)) p (0..<PolyN)      let initialise (p: *poly): *context =          let deriv = derivative p @@ -69,20 +69,20 @@ module aberth = {      let step (ctx: context) (approx: *approx): *(bool, approx) =          let pvals = map (eval_c ctx.p) approx          let derivvals = map (evaln_c ctx.deriv (PolyN - 1)) approx -        let quos = map2 (c64./) pvals derivvals +        let quos = map2 (cplx./) pvals derivvals          let sums = map (\i -> -                            reduce_comm (c64.+) (c64.mk_re 0.0) +                            reduce_comm (cplx.+) (cplx.mk_re 0.0)                                  (map (\j -> -                                        if i == j then c64.mk_re 0.0 -                                        else c64.mk_re 1.0 c64./ -                                                (approx[i] c64.- approx[j])) +                                        if i == j then cplx.mk_re 0.0 +                                        else cplx.mk_re 1.0 cplx./ +                                                (approx[i] cplx.- approx[j]))                                       (0..<N)))                         (0..<N) -        let offsets = map2 (\quo sum -> quo c64./ (c64.mk_re 1.0 c64.- quo c64.* sum)) +        let offsets = map2 (\quo sum -> quo cplx./ (cplx.mk_re 1.0 cplx.- quo cplx.* sum))                             quos sums -        let approx = map2 (c64.-) approx offsets -        let svals = map (eval_d ctx.bound <-< c64.mag) approx -        let conditions = map2 (\p s -> c64.mag p <= 1e-9 * s) pvals svals +        let approx = map2 (cplx.-) approx offsets +        let svals = map (eval_d ctx.bound <-< cplx.mag) approx +        let conditions = map2 (\p s -> cplx.mag p <= 1e-9 * s) pvals svals          let all_converged = all id conditions          in (all_converged, approx) @@ -120,11 +120,11 @@ let next_derbyshire (p: *poly): *(bool, poly) =  let derbyshire_at_index (index: i32): *poly =      let bitfield = (index << 1) + 1 -    in tabulate PolyN (\i -> f64.i32 (i32.get_bit i bitfield * 2 - 1)) +    in tabulate PolyN (\i -> f32.i32 (i32.get_bit i bitfield * 2 - 1)) -let calc_index (value: f64) (left: f64) (right: f64) (steps: i32): i32 = -    t64 ((value - left) / (right - left) * (r64 steps - 1) + 0.5) +let calc_index (value: f32) (left: f32) (right: f32) (steps: i32): i32 = +    i32.f32 ((value - left) / (right - left) * (f32.i32 steps - 1) + 0.5)  let point_index          (width: i32) (height: i32) @@ -133,8 +133,8 @@ let point_index          : i32 =      -- Range for 'yi' is reversed because image coordinates go down in the y      -- direction, while complex coordinates go up in the y direction -    let xi = calc_index (c64.re pt) (c64.re bottom_left) (c64.re top_right) width -    let yi = calc_index (c64.im pt) (c64.im top_right) (c64.im bottom_left) height +    let xi = calc_index (cplx.re pt) (cplx.re bottom_left) (cplx.re top_right) width +    let yi = calc_index (cplx.im pt) (cplx.im top_right) (cplx.im bottom_left) height      in if 0 <= xi && xi < width && 0 <= yi && yi < height          then width * yi + xi          else -1 @@ -142,13 +142,13 @@ let point_index  entry main_job          (start_index: i32) (num_polys: i32)          (width: i32) (height: i32) -        (left: f64) (top: f64) (right: f64) (bottom: f64) +        (left: f32) (top: f32) (right: f32) (bottom: f32)          (seed: i32)          : []i32 =      -- Unnecessary to give each polynomial a different seed      let rng = rand_engine.rng_from_seed [seed] -    let bottom_left = c64.mk left bottom -    let top_right = c64.mk right top +    let bottom_left = cplx.mk left bottom +    let top_right = cplx.mk right top      let indices = flatten              (map (\idx ->                      let p = derbyshire_at_index idx @@ -163,7 +163,7 @@ entry main_job  entry main_all          (width: i32) (height: i32) -        (left: f64) (top: f64) (right: f64) (bottom: f64) +        (left: f32) (top: f32) (right: f32) (bottom: f32)          (seed: i32)          : []i32 =      main_job 0 (1 << N) width height left top right bottom seed | 
