1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
#include <stdexcept>
#include <cstring>
#include <cassert>
#include "aes.h"
#include "gf28.h"
#include "rng.h"
using namespace std;
namespace AES{
//http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf (AES)
//https://tools.ietf.org/html/rfc3602 (CBC)
//State is represented in bytes, as is the key schedule (which is represented in words in the AES spec).
//State is in column-major order.
//Most functions (and the three tables below) refer to similarly named functions and tables in the AES
//spec. The core AES algorithm is not documented here.
uint32_t roundconstant[10]={};
uint8_t sbox[256]={};
uint8_t invsbox[256]={}; //look-up table of sbox
void initTables(){
//generated tables have been checked with AES spec
int term=0x01;
for(int i=0;i<10;i++){
roundconstant[i]=term<<24;
term=GF28::multiply(term,0x02);
}
for(int i=0;i<256;i++){
uint8_t inv=(uint8_t)GF28(i).inverse();
uint8_t res=0;
for(int j=0;j<8;j++){
uint8_t bit=((inv>>j)&1)^
((inv>>((j+4)%8))&1)^
((inv>>((j+5)%8))&1)^
((inv>>((j+6)%8))&1)^
((inv>>((j+7)%8))&1);
res|=bit<<j;
}
res^=0x63;
sbox[i]=res;
invsbox[res]=i;
}
}
uint32_t subWord(uint32_t word){
return (sbox[word>>24]<<24)|(sbox[(word>>16)&0xff]<<16)|(sbox[(word>>8)&0xff]<<8)|sbox[word&0xff];
}
uint32_t rotWord(uint32_t word){
return (word<<8)|(word>>24);
}
void keyExpand(uint8_t *keysched,const uint8_t *key,int keylen,int numrounds){
memcpy(keysched,key,4*keylen);
for(int i=keylen;i<4*(numrounds+1);i++){
uint32_t temp=(keysched[4*i-4]<<24)|(keysched[4*i-3]<<16)|(keysched[4*i-2]<<8)|keysched[4*i-1];
if(i%keylen==0){
temp=subWord(rotWord(temp))^roundconstant[i/keylen-1];
} else if(keylen>6&&i%keylen==4){
temp=subWord(temp);
}
keysched[4*i+0]=keysched[4*(i-keylen)+0]^(temp>>24);
keysched[4*i+1]=keysched[4*(i-keylen)+1]^((temp>>16)&0xff);
keysched[4*i+2]=keysched[4*(i-keylen)+2]^((temp>>8)&0xff);
keysched[4*i+3]=keysched[4*(i-keylen)+3]^(temp&0xff);
}
}
void addRoundKey(uint8_t *state,const uint8_t *roundkey){
for(int i=0;i<16;i++)state[i]^=roundkey[i];
}
void subBytes(uint8_t *state){
for(int i=0;i<16;i++)state[i]=sbox[state[i]];
}
void shiftRows(uint8_t *state){
uint8_t t=state[1]; state[1]=state[5]; state[5]=state[9]; state[9]=state[13]; state[13]=t;
swap(state[2],state[10]); swap(state[6],state[14]);
t=state[3]; state[3]=state[15]; state[15]=state[11]; state[11]=state[7]; state[7]=t;
}
void mixColumns(uint8_t *state){
for(int i=0;i<4;i++){
uint8_t a=GF28::multiply(0x02,state[4*i+0]) ^ GF28::multiply(0x03,state[4*i+1]) ^ state[4*i+2] ^ state[4*i+3];
uint8_t b=state[4*i+0] ^ GF28::multiply(0x02,state[4*i+1]) ^ GF28::multiply(0x03,state[4*i+2]) ^ state[4*i+3];
uint8_t c=state[4*i+0] ^ state[4*i+1] ^ GF28::multiply(0x02,state[4*i+2]) ^ GF28::multiply(0x03,state[4*i+3]);
uint8_t d=GF28::multiply(0x03,state[4*i+0]) ^ state[4*i+1] ^ state[4*i+2] ^ GF28::multiply(0x02,state[4*i+3]);
state[4*i+0]=a;
state[4*i+1]=b;
state[4*i+2]=c;
state[4*i+3]=d;
}
}
void invShiftRows(uint8_t *state){
uint8_t t=state[1]; state[1]=state[13]; state[13]=state[9]; state[9]=state[5]; state[5]=t;
swap(state[2],state[10]); swap(state[6],state[14]);
t=state[3]; state[3]=state[7]; state[7]=state[11]; state[11]=state[15]; state[15]=t;
}
void invSubBytes(uint8_t *state){
for(int i=0;i<16;i++)state[i]=invsbox[state[i]];
}
void invMixColumns(uint8_t *state){
for(int i=0;i<4;i++){
uint8_t a=GF28::multiply(0x0e,state[4*i+0])^
GF28::multiply(0x0b,state[4*i+1])^
GF28::multiply(0x0d,state[4*i+2])^
GF28::multiply(0x09,state[4*i+3]);
uint8_t b=GF28::multiply(0x09,state[4*i+0])^
GF28::multiply(0x0e,state[4*i+1])^
GF28::multiply(0x0b,state[4*i+2])^
GF28::multiply(0x0d,state[4*i+3]);
uint8_t c=GF28::multiply(0x0d,state[4*i+0])^
GF28::multiply(0x09,state[4*i+1])^
GF28::multiply(0x0e,state[4*i+2])^
GF28::multiply(0x0b,state[4*i+3]);
uint8_t d=GF28::multiply(0x0b,state[4*i+0])^
GF28::multiply(0x0d,state[4*i+1])^
GF28::multiply(0x09,state[4*i+2])^
GF28::multiply(0x0e,state[4*i+3]);
state[4*i+0]=a;
state[4*i+1]=b;
state[4*i+2]=c;
state[4*i+3]=d;
}
}
//The AES block encryption algorithm specified in the AES spec
void encryptBlock(uint8_t *state,const uint8_t *keysched,const uint8_t *data,int numrounds){
memcpy(state,data,16);
addRoundKey(state,keysched);
for(int round=0;round<numrounds-1;round++){
subBytes(state);
shiftRows(state);
mixColumns(state);
addRoundKey(state,keysched+16*(round+1));
}
subBytes(state);
shiftRows(state);
addRoundKey(state,keysched+16*numrounds);
}
//The AES block decryption algorithm specified in the AES spec
void decryptBlock(uint8_t *state,const uint8_t *keysched,const uint8_t *data,int numrounds){
memcpy(state,data,16);
addRoundKey(state,keysched+16*numrounds);
for(int round=numrounds-2;round>=0;round--){
invShiftRows(state);
invSubBytes(state);
addRoundKey(state,keysched+16*(round+1));
invMixColumns(state);
}
invShiftRows(state);
invSubBytes(state);
addRoundKey(state,keysched);
}
//Encrypt variably sized data with a key (assumed to be of valid length).
//This applies the CBC algorithm: first generate an IV and add it to the
//ciphertext as the first block. Then when encrypting the next block, first
//xor it with the previous encrypted block. With this encryption method, all
//of the encrypted text is influenced by the random IV, and therefore
//different each time.
//Padding is standard: if n>0 bytes are needed to reach a multiple of 16 bytes,
//n bytes of padding are added with the value n. This is easily reversible.
string encryptCBC(const string &data,const string &key,int numrounds){
if(roundconstant[0]==0)initTables();
int sz=data.size();
if(sz==0)return {}; //if nothing to encrypt, don't even give an IV
int blocks=sz/16;
int padding=16-sz%16;
string res;
assert((sz+padding)%16==0);
res.reserve(16+sz+padding);
res.resize(16);
CryptoRng crng;
*(uint32_t*)&res[0]=crng.get(); //IV
*(uint32_t*)&res[4]=crng.get(); //endianness doesn't matter, since the data is random anyway
*(uint32_t*)&res[8]=crng.get();
*(uint32_t*)&res[12]=crng.get();
uint8_t keysched[16*(numrounds+1)];
keyExpand(keysched,(const uint8_t*)key.data(),key.size()/4,numrounds);
uint8_t buf[16],inbuf[16];
for(int i=0;i<blocks;i++){
memcpy(inbuf,data.data()+16*i,16);
for(int j=0;j<16;j++)inbuf[j]^=res[res.size()-16+j]; //the CBC xor step
encryptBlock(buf,keysched,inbuf,numrounds);
res.insert(res.size(),(char*)buf,16);
}
if(padding<16)memcpy(inbuf,data.data()+16*blocks,16-padding);
memset(inbuf+16-padding,padding,padding); //apply the padding
for(int j=0;j<16;j++)inbuf[j]^=res[res.size()-16+j]; //the CBC xor step
encryptBlock(buf,keysched,inbuf,numrounds); //encrypt the final padded block
res.insert(res.size(),(char*)buf,16);
return res;
}
//The inverse of encryptCBC
string decryptCBC(const string &data,const string &key,int numrounds){
if(roundconstant[0]==0)initTables();
if(data.size()==0)return {};
if(data.size()%16!=0)throw invalid_argument("AES encrypted data not multiple of block size");
int blocks=data.size()/16-1; //the IV is not counted as a block
string res(16*blocks,'\0');
uint8_t keysched[16*(numrounds+1)];
keyExpand(keysched,(const uint8_t*)key.data(),key.size()/4,numrounds);
for(int i=blocks-1;i>=0;i--){
decryptBlock((uint8_t*)&res[16*i],keysched,(const uint8_t*)data.data()+(16+16*i),numrounds);
for(int j=0;j<16;j++)res[16*i+j]^=data[16*i+j]; //CBC: xor with the previous (remember the IV taking up space)
}
int padsize=res.back();
if(padsize>16||padsize<0)throw invalid_argument("Malformed AES padding");
res.resize(res.size()-padsize);
return res;
}
//Public interface to encryptCBC
string encrypt(const string &data,const string &key,Algorithm algo){
int increment;
switch(algo){
case AES_128_CBC: increment=0; break;
case AES_192_CBC: increment=1; break;
case AES_256_CBC: increment=2; break;
default: assert(false);
}
assert((int)key.size()==4*(4+2*increment));
return encryptCBC(data,key,10+2*increment);
}
//Public interface to decryptCBC
string decrypt(const string &data,const string &key,Algorithm algo){
int increment;
switch(algo){
case AES_128_CBC: increment=0; break;
case AES_192_CBC: increment=1; break;
case AES_256_CBC: increment=2; break;
default: assert(false);
}
if((int)key.size()!=4*(4+2*increment)){
throw invalid_argument("Invalid AES key length");
}
return decryptCBC(data,key,10+2*increment);
}
}
|