1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
#include <stdexcept>
#include <cstring>
#include <cmath>
#include <cassert>
#include "numalgo.h"
#include "primes.h"
using namespace std;
vector<int> smallprimes;
bool smallprimes_inited=false;
void fillsmallprimes(){
smallprimes_inited=true;
//TODO: reserve expected amount of space in smallprimes
smallprimes.push_back(2);
const int highbound=65000;
bool composite[highbound/2]; //entries for 3, 5, 7, 9, etc.
memset(composite,0,highbound/2*sizeof(bool));
int roothighbound=sqrt(highbound);
for(int i=3;i<=highbound;i+=2){
if(composite[i/2-1])continue;
smallprimes.push_back(i);
if(i>roothighbound)continue;
for(int j=i*i;j<=highbound;j+=2*i){
composite[j/2-1]=true;
}
}
}
pair<Bigint,Bigint> genprimepair(Rng &rng,int nbits){
// for x = nbits/2:
// (2^x)^2 = 2^(2x)
// (2^x + 2^(x-2))^2 = 2^(2x) + 2^(2x-1) + 2^(2x-4)
// ergo: (2^x + lambda*2^(x-2))^2 \in [2^(2x), 2^(2x+1)), for lambda \in [0,1]
// To make sure the primes "differ in length by a few digits" [RSA78], we use x1=x-2 in the first
// prime and x2=x+2 in the second random prime searched
int x1=nbits/2-2,x2=(nbits+1)/2+2;
assert(x1+x2==nbits);
return make_pair(
randprime(rng,Bigint::one<<x1,(Bigint::one<<x1)+(Bigint::one<<(x1-2))),
randprime(rng,Bigint::one<<x2,(Bigint::one<<x2)+(Bigint::one<<(x2-2))));
}
Bigint randprime(Rng &rng,const Bigint &biglow,const Bigint &bighigh){
//https://en.wikipedia.org/wiki/Generating_primes#Large_primes
if(!smallprimes_inited)fillsmallprimes();
assert(bighigh>biglow);
static const int maxrangesize=100001;
Bigint diff(bighigh-biglow);
Bigint low,high; //inclusive
if(diff<=maxrangesize){
low=biglow;
high=bighigh;
} else {
high=low=bigrandom(rng,diff-maxrangesize);
high+=maxrangesize;
}
if(low.even())low+=1;
if(high.even())high-=1;
Bigint sizeb(high-low+1);
assert(sizeb>=0&&sizeb<=maxrangesize);
int nnums=(sizeb.lowdigits()+1)/2;
// cerr<<"nnums="<<nnums<<endl;
int nleft=nnums;
bool composite[nnums]; //low, low+2, low+4, ..., high (all odd numbers)
memset(composite,0,nnums*sizeof(bool));
int nsmallprimes=smallprimes.size();
for(int i=1;i<nsmallprimes;i++){
int pr=smallprimes[i];
if(pr>=2*nnums)break;
int lowoffset=low.divmod(Bigint(pr)).second.lowdigits();
int startat;
if(lowoffset==0)startat=0;
else if((pr-lowoffset)%2==0)startat=(pr-lowoffset)/2;
else startat=(pr-lowoffset+pr)/2;
for(int i=startat;i<nnums;i+=pr){ //skips ahead `2*pr` each time (so `pr` array elements)
nleft-=!composite[i];
composite[i]=true;
}
}
vector<int> maybeprimes;
maybeprimes.reserve(nleft);
for(int i=0;i<nnums;i++){
if(!composite[i]){
maybeprimes.push_back(i);
}
}
while(maybeprimes.size()){
int idx=rng.get_uniform(maybeprimes.size());
int i=maybeprimes[idx];
Bigint bi(low+2*i);
if(bailliePSW(bi))return bi;
maybeprimes.erase(maybeprimes.begin()+idx);
}
throw range_error("No primes");
}
bool strongPseudoPrime2(const Bigint &n){
//https://en.wikipedia.org/wiki/Strong_pseudoprime#Formal_definition
if(n<2)return false;
if(n==2)return true;
if(n.even())return false;
Bigint nm1(n);
nm1-=1;
Bigint d(nm1);
while(d.even()){ //TODO: optimise using __builtin_ctz
d>>=1;
if(expmod(Bigint::two,d,n)==nm1)return true;
}
if(expmod(Bigint::two,d,n)==1)return true;
return false;
}
bool strongLucasPrime(const Bigint &n){
//https://en.wikipedia.org/wiki/Lucas_pseudoprime#Implementing_a_Lucas_probable_prime_test
if(n<2)return false;
if(n==2)return true;
if(n.even())return false;
int D;
if ((D= 5),jacobiSymbol(Bigint(D),n)==-1);
else if((D= -7),jacobiSymbol(Bigint(D),n)==-1);
else if((D= 9),jacobiSymbol(Bigint(D),n)==-1);
else if((D=-11),jacobiSymbol(Bigint(D),n)==-1);
else {
Bigint root(isqrt(n));
if(root*root==n)return false; //perfect square
for(int i=6;;i++){
D=2*i+1;
if(i%2==1)D=-D;
if(jacobiSymbol(Bigint(D),n)==-1)break;
}
}
//now we have a D
int P=1,iQ=(1-D)/4;
if(gcd(n,Bigint(P)).compareAbs(1)!=0||gcd(n,Bigint(iQ)).compareAbs(1)!=0)return false; //would be too easy to ignore
//now begin the actual sequence algorithm
int s=0;
Bigint d(n);
d+=1;
while(d.even()){
d>>=1;
s++;
}
vector<bool> dbits=d.bits();
assert(dbits.size()>0);
assert(dbits[dbits.size()-1]==true);
Bigint U(1),V(P);
Bigint Qk(iQ);
for(int i=dbits.size()-2;i>=0;i--){
U*=V;
V*=V;
V-=Qk<<1;
Qk*=Qk;
if(dbits[i]){
Bigint unext(U*P);
unext+=V;
if(unext.odd())unext+=n;
assert(unext.even());
unext>>=1;
Bigint vnext(U*D);
vnext+=V*P;
if(vnext.odd())vnext+=n;
assert(vnext.even());
vnext>>=1;
U=unext.divmod(n).second;
V=vnext.divmod(n).second;
Qk=(Qk*iQ).divmod(n).second;
} else {
U=U.divmod(n).second;
V=V.divmod(n).second;
Qk=Qk.divmod(n).second;
}
}
if(U==0)return true;
if(V==0)return true; //r=0 check
for(int r=1;r<s;r++){
V*=V;
V-=Qk<<1;
V=V.divmod(n).second;
Qk=(Qk*Qk).divmod(n).second;
if(V==0)return true;
}
return false;
}
bool bailliePSW(const Bigint &n){
//https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test#The_test
return strongPseudoPrime2(n)&&strongLucasPrime(n);
}
|