aboutsummaryrefslogtreecommitdiff
path: root/test/NonBaseTH.hs
blob: 4741ea0883ebfdfff229f5e75f73e40c3d6cc86b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE TemplateHaskellQuotes #-}
{-# LANGUAGE TupleSections #-}
module NonBaseTH (
  defineBaseAST,
) where

import Control.Monad (when)
import Data.List (sort, foldl', tails)
import qualified Data.Map.Strict as Map
import Data.Maybe (catMaybes)
import Language.Haskell.TH

import Data.Expr.SharingRecovery


-- | Non-base AST data type
data NBAST = NBAST String [TyVarBndr ()] [NBCon]

data NBCon = NBCon
    [String]                -- ^ Names of the constructors defined with this clause
    [TyVarBndrSpec]         -- ^ Type variables in scope in the clause
    Cxt                     -- ^ Constraints on the constructor type
    [(Bang, NBField Type)]  -- ^ Constructor fields
    [Name]                  -- ^ All but the last type parameter in the result type
    Type                    -- ^ The last type parameter in the result type

data NBField t
  = NBFList (NBField t)
  | NBFTuple [NBField t]
  | NBFRecur t  -- ^ The last type parameter of this recursive position. (The
                -- other type parameters are fixed anyway.)
  | NBFConst Type

parseNBAST :: [String] -> Info -> Q NBAST
parseNBAST excludes info = do
  (astname, params, constrs) <- case info of
    TyConI (DataD [] astname params Nothing constrs _) -> return (astname, params, constrs)
    _ -> fail "Unsupported datatype"

  -- In this function we use parameter/index terminology: parameters are
  -- uniform, indices vary inside an AST.
  let parseField retpars field = do
        let (core, args) = splitApps field
        case core of
          ConT n
            | n == astname ->
                if not (null args) && init args == map VarT retpars
                  then return (NBFRecur (last args))
                  else fail $ "Field\n  " ++ pprint field
                              ++ "\nis recursive, but with different type parameters than "
                              ++ "the return type of this constructor. All but the last type "
                              ++ "parameter of the GADT must be uniform over the entire AST."

          ListT
            | [arg] <- args -> NBFList <$> parseField retpars arg

          TupleT k
            | length args == k -> NBFTuple <$> traverse (parseField retpars) args

          _ -> do
            when (pprint astname `infixOf` pprint field) $
              reportWarning $ "Field\n  " ++ pprint field ++ "\nseems to refer to "
                              ++ pprint astname ++ " in unsupported ways; ignoring those occurrences."
            return (NBFConst field)

  let splitConstr (ForallC vars ctx (GadtC names fields retty))
        | names'@(_:_) <- filter (`notElem` excludes) (map nameBase names) =
            return (Just (vars, ctx, names', fields, retty))
        | otherwise = return Nothing
      splitConstr c@GadtC{} = splitConstr (ForallC [] [] c)
      splitConstr c =
        let names = case c of
                      NormalC n _ -> Just (show n)
                      _ -> Just (show c)
        in fail $ "Unsupported constructors found" ++ maybe "" (\s -> ": " ++ show s) names

  let parseConstr (vars, ctx, names, fields, retty) = do
        (retpars, retindex) <- parseRetty astname (head names) retty
        fields' <- traverse (\(ba, t) -> (ba,) <$> parseField retpars t) fields
        return (NBCon names vars ctx fields' retpars retindex)

  constrs' <- traverse parseConstr =<< catMaybes <$> traverse splitConstr constrs
  return (NBAST (nameBase astname) params constrs')


-- | Define a new GADT that is a base-functor-like version of a given existing
-- GADT AST.
--
-- Remember to use 'lookupTypeName' or 'lookupValueName' instead of normal
-- quotes in case of punning of data types and constructors.
defineBaseAST
  :: String  -- ^ Name of the (base-functor-like) data type to define
  -> Name  -- ^ Name of the GADT to process
  -> [Name]  -- ^ Constructors to exclude (Var and Let, plus any other scoping construct)
  -> (String -> String)  -- ^ Constructor renaming function
  -> String  -- ^ Name of base -> nonbase conversion function to define
  -> Name  -- ^ Type of singleton types
  -> (ExpQ -> ExpQ -> ExpQ -> ExpQ)  -- ^ Lambda: typ (a -> b) -> typ a -> AST b -> AST (a -> b)
  -> (ExpQ -> ExpQ -> ExpQ -> ExpQ)  -- ^ Let: typ a -> String -> AST a -> AST b -> AST b
  -> (ExpQ -> ExpQ -> ExpQ -> ExpQ)  -- ^ Var: typ t -> String -> AST b -> AST b
  -> Q [Dec]
defineBaseAST basename astname excludes renameConstr bnConvName typName mkLam mkLet mkVar = do
  NBAST _ params constrs <- parseNBAST (map nameBase excludes) =<< reify astname

  -- Build the data type

  let basename' = mkName basename
      conNameMap = Map.fromList [(nbname, mkName (renameConstr nbname))
                                | NBCon ns _ _ _ _ _ <- constrs, nbname <- ns]

  let recvar = mkName "r"

  let processField (NBFRecur idx) = VarT recvar `AppT` idx
      processField (NBFConst t) = t
      processField (NBFList f) = AppT ListT (processField f)
      processField (NBFTuple fs) = foldl' AppT (TupleT (length fs)) (map processField fs)

  let processConstr (NBCon names vars ctx fields retparams retindex) = do
        let names' = map (conNameMap Map.!) names
        let fields' = map (\(ba, f) -> (ba, processField f)) fields
        let retty' = foldl' AppT (ConT basename') (map VarT retparams ++ [VarT recvar, retindex])
        return [ForallC (map cleanupBndr vars ++ [PlainTV recvar SpecifiedSpec])
                        ctx (GadtC names' fields' retty')]

  let params' = map cleanupBndr (init params ++ [PlainTV recvar (), last params])
  constrs' <- concat <$> traverse processConstr constrs
  let datatype = DataD [] (mkName basename) params' Nothing constrs' []

  -- Build the B->N conversion function

  let bnConvName' = mkName bnConvName
      envparam = VarT (mkName "env")
      tparam = VarT (mkName "t")
      ftype = foldl' AppT (ConT basename') (map (VarT . bndrName) (init params))
      arrow a b = ArrowT `AppT` a `AppT` b

  let bnConvSig =
        SigD bnConvName' $
             (ConT ''BExpr `AppT` ConT typName `AppT` envparam `AppT` ftype `AppT` tparam)
             `arrow`
             foldl' AppT (ConT astname) (map (VarT . bndrName) (init params) ++ [tparam])

  let clause' pats ex = Clause pats (NormalB ex) []
      -- backConMap = Map.fromList [(renameConstr nbname, nbname)
      --                           | NBCon ns _ _ _ _ _ <- constrs, nbname <- ns]
      reconstructField (NBFRecur _) = do
        r <- newName "r"
        return (VarP r, VarE bnConvName' `AppE` VarE r)
      reconstructField (NBFConst _) = do
        x <- newName "x"
        return (VarP x, VarE x)
      reconstructField (NBFList f) = do
        (pat, ex) <- reconstructField f
        l <- newName "l"
        return (VarP l, VarE 'map `AppE` LamE [pat] ex `AppE` VarE l)
      reconstructField (NBFTuple fs) = do
        (pats, exps) <- unzip <$> traverse reconstructField fs
        return (TupP pats, TupE (map Just exps))

  let tyarg1 = mkName "ty1"
      tyarg2 = mkName "ty2"
      astarg = mkName "ast"
      mkseq a b = VarE 'seq `AppE` a `AppE` b
      infixr `mkseq`

  bnConvFun <-
    fmap (FunD bnConvName') . sequence $
       [do (pats, exps) <- unzip <$> traverse (reconstructField . snd) fields
           return $
             clause' [ConP 'BOp [] [WildP, ConP (conNameMap Map.! nbname) [] pats]]
                     (foldl' AppE (ConE (mkName nbname)) exps)
       | NBCon names _ _ fields _ _ <- constrs
       , nbname <- names]
       ++
       [do body <- mkLam (varE tyarg1) (varE tyarg2) (varE astarg)
           return $ clause' [ConP 'BLam [] [VarP tyarg1, VarP tyarg2, VarP astarg]]
                            -- put them in a useless seq so that they're not unused
                            (TupE [Just (VarE tyarg1), Just (VarE tyarg2), Just (VarE astarg)] `mkseq` body)]

  return [datatype, bnConvSig, bnConvFun]

-- | Remove `:: Type` annotations because they unnecessarily require the user
-- to enable KindSignatures. Any other annotations we leave, in case the user
-- wrote them and they are necessary.
cleanupBndr :: TyVarBndr a -> TyVarBndr a
cleanupBndr (KindedTV name x k) | isType k = PlainTV name x
  where isType StarT = True
        isType (ConT n) | n == ''Type = True
        isType _ = False
cleanupBndr b = b

bndrName :: TyVarBndr a -> Name
bndrName (PlainTV name _) = name
bndrName (KindedTV name _ _) = name

parseRetty :: Name -> String -> Type -> Q ([Name], Type)
parseRetty astname consname retty = do
  case splitApps retty of
    (ConT name, args)
      | name /= astname -> fail $ "Could not parse return type of constructor " ++ consname
      | null args -> fail "Expected GADT to have type parameters"

      | Just varnames <- traverse (\case VarT varname -> Just varname ; _ -> Nothing) (init args)
      , allDistinct varnames ->
          return (varnames, last args)

      | otherwise -> fail $ "All type parameters but the last one must be uniform over all constructors. "
                            ++ "(Return type of constructor " ++ consname ++ ")"
    _ -> fail $ "Could not parse return type of constructor " ++ consname

splitApps :: Type -> (Type, [Type])
splitApps = flip go []
  where go (ParensT t) tl = go t tl
        go (AppT t arg) tl = go t (arg : tl)
        go t tl = (t, tl)

allDistinct :: Ord a => [a] -> Bool
allDistinct l =
  let sorted = sort l
  in all (uncurry (/=)) (zip sorted (drop 1 sorted))

infixOf :: Eq a => [a] -> [a] -> Bool
short `infixOf` long = any (`startsWith` short) (tails long)
  where a `startsWith` b = take (length b) a == b