1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
|
{-# LANGUAGE RankNTypes #-}
module Main where
import Control.Monad
import Control.Monad.Writer
import Data.Char
import Data.Either
import Data.List
import Data.Maybe
import System.Exit
import qualified FSu
lupdate :: Int -> a -> [a] -> [a]
lupdate 0 v (_:xs) = v:xs
lupdate i v (x:xs) = x : lupdate (i-1) v xs
lupdate _ _ [] = error "Empty list in lupdate"
b2i :: Bool -> Int
b2i = fromEnum
newtype Sudoku = Sudoku [Either Value Poss] -- length 81
deriving (Show, Eq)
type Value = Int
newtype Poss = Poss [Bool] -- length 9
deriving (Show, Eq)
at :: Sudoku -> Int -> Either Value Poss
at (Sudoku l) i = l !! i
atv :: Sudoku -> Int -> Maybe Value
atv su i = case at su i of
Left v -> Just v
Right _ -> Nothing
atp :: Sudoku -> Int -> Poss
atp su i = case at su i of
Left _ -> Poss (replicate 9 False)
Right p -> p
update :: Int -> Either Value Poss -> Sudoku -> Sudoku
update i v (Sudoku l) = Sudoku $ lupdate i v l
listPoss :: [Value] -> Poss
listPoss l = Poss [i `elem` l | i <- [0..8]]
possList :: Poss -> [Value]
possList (Poss m) = map snd $ filter fst $ zip m [0..8]
possAnd :: Poss -> Poss -> Poss
possAnd (Poss l1) (Poss l2) = Poss (zipWith (&&) l1 l2)
possOr :: Poss -> Poss -> Poss
possOr (Poss l1) (Poss l2) = Poss (zipWith (||) l1 l2)
possElem :: Value -> Poss -> Bool
possElem n (Poss l) = 0 <= n && n < 9 && l !! n
possExact1 :: [Poss] -> Poss
possExact1 [] = Poss (replicate 9 False)
possExact1 ps = Poss $ map (== 1) $ foldl1 (zipWith (+)) $ map (\(Poss p) -> map b2i p) ps
possMakeAllExcept :: Value -> Poss
possMakeAllExcept n = Poss $ map (\i -> if i == n then False else True) [0..8]
possGetIfInOne :: [Poss] -> Value -> Maybe Int
possGetIfInOne ps n = case concatMap (\(p,i) -> if n `possElem` p then [i] else []) (zip ps [0..]) of
[i] -> Just i
_ -> Nothing
backtrackSolve :: Sudoku -> [Sudoku]
backtrackSolve (Sudoku l) = do
let ml = map (either Just (const Nothing)) l
res <- FSu.solve ml
let l' = map (maybe (Right (listPoss [0..8])) Left) res
return $ Sudoku l'
data Region = Row Int Sudoku | Col Int Sudoku | Block Int Sudoku | Cell Int Sudoku
deriving (Show, Eq)
rowOf :: Region -> Region
rowOf (Cell i su) = Row (i `div` 9) su
colOf :: Region -> Region
colOf (Cell i su) = Col (i `mod` 9) su
blockOf :: Region -> Region
blockOf (Cell i su) = Block (3 * (i `div` 27) + (i `mod` 9) `div` 3) su
valueOf :: Region -> Maybe Value
valueOf (Cell i su) = su `atv` i
possOf :: Region -> Poss
possOf (Cell i su) = su `atp` i
contentsOf :: Region -> Either Value Poss
contentsOf (Cell i su) = su `at` i
indexOf :: Region -> Int
indexOf (Cell i _) = i
sudokuOf :: Region -> Sudoku
sudokuOf (Cell _ su) = su
sudokuOf (Row _ su) = su
sudokuOf (Col _ su) = su
sudokuOf (Block _ su) = su
indexRange :: Region -> [Int]
indexRange (Cell _ _) = [0]
indexRange (Row _ _) = [0..8]
indexRange (Col _ _) = [0..8]
indexRange (Block _ _) = [0..8]
-- Doesn't check sudoku equality
cellIsIn :: Region -> Region -> Bool
cellIsIn (Cell i _) (Cell j _) = i == j
cellIsIn (Cell i _) (Row r _) = i `div` 9 == r
cellIsIn (Cell i _) (Col c _) = i `mod` 9 == c
cellIsIn (Cell i _) (Block b _) = (i `mod` 9) `div` 3 == b `mod` 3 && i `div` 27 == b `div` 3
adaptRegion :: Region -> Sudoku -> Region
adaptRegion (Cell i _) su = Cell i su
adaptRegion (Row i _) su = Row i su
adaptRegion (Col i _) su = Col i su
adaptRegion (Block i _) su = Block i su
class HasCells a where
cell :: Int -> a -> Region
instance HasCells Sudoku where
cell i su | 0 <= i && i < 81 = Cell i su
instance HasCells Region where
cell i (Row r su) | 0 <= i && i < 9 = Cell (9 * r + i) su
cell i (Col c su) | 0 <= i && i < 9 = Cell (9 * i + c) su
cell i (Block b su) | 0 <= i && i < 9 =
let bx = 3 * (b `mod` 3)
by = 3 * (b `div` 3)
in Cell (9 * (by + i `div` 3) + bx + i `mod` 3) su
cell 0 c@(Cell _ _) = c
cell _ _ = undefined
class HasValues a where
values :: a -> [Value]
instance HasValues Sudoku where
values (Sudoku l) = lefts l
instance HasValues Region where
values (Cell i su) = maybe [] pure (su `atv` i)
values reg = concatMap values [cell i reg | i <- indexRange reg] -- row, col, block
class UpdateValue a where
updateValue :: Int -> Value -> a -> Sudoku
instance UpdateValue Sudoku where
updateValue i v su = update i (Left v) su
instance UpdateValue Region where
updateValue 0 v (Cell j su) = update j (Left v) su
updateValue _ _ (Cell _ _) = undefined
updateValue i v reg = updateValue 0 v (cell i reg) -- row, col, block
class MaskPoss a where
maskPoss :: a -> Poss -> Sudoku
instance MaskPoss Region where
maskPoss (Cell i su) p = case su `at` i of
Left _ -> su
Right p' -> update i (Right (p `possAnd` p')) su
maskPoss row@(Row r _) p = sudokuOf $ foldl (\row' i -> Row r $ maskPoss (cell i row') p) row [0..8]
maskPoss col@(Col c _) p = sudokuOf $ foldl (\col' i -> Col c $ maskPoss (cell i col') p) col [0..8]
maskPoss blk@(Block b _) p = sudokuOf $ foldl (\blk' i -> Block b $ maskPoss (cell i blk') p) blk [0..8]
readSudoku :: String -> Sudoku
readSudoku s = Sudoku $ flip map (words s) $ \w -> case w of
"." -> Right (Poss $ replicate 9 True)
[c] | '1' <= c && c <= '9' -> Left (ord c - ord '1')
_ -> error "Invalid sudoku input"
writeSudokuGeneric :: Sudoku -> Bool -> String
writeSudokuGeneric su full =
intercalate "\n"
[testinter n "\n" ++
intercalate " "
(map (\i -> testinter i " " ++ printone (su `atv` i) ++ printposs (su `atp` i)) [9*n..9*n+8])
| n <- [0..8]]
where
printone :: Maybe Value -> String
printone Nothing = "."
printone (Just n) = show (n + 1)
printposs :: Poss -> String
printposs (Poss m) =
let s = map snd $ filter fst $ zip m ['1'..'9']
padded = replicate (9 - length s) ' ' ++ s
in if full then "(" ++ padded ++ ")" else ""
testinter :: Int -> String -> String
testinter i s = let n = i `mod` 9 in if n > 0 && n `mod` 3 == 0 then s else ""
writeSudoku :: Sudoku -> String
writeSudoku su = writeSudokuGeneric su False
writeSudokuFull :: Sudoku -> String
writeSudokuFull su = writeSudokuGeneric su True
writeSudokuDiff :: Sudoku -> Sudoku -> String
writeSudokuDiff su1 su2 =
intercalate "\n" $ flip map [0..8] $ \r ->
let line = flip concatMap [0..8] $ \c ->
(if c > 1 && c `mod` 3 == 0 then " " else "")
++ (if c > 1 then " " else "")
++ case (su1 `at` (9 * r + c), su2 `at` (9 * r + c)) of
(Left v1, Left v2) | v1 == v2 -> show (v2 + 1) ++ printposs pe pe
| otherwise -> high (show (v2 + 1)) ++ printposs pe pe
(Left _, Right p) -> high ("." ++ printposs p p)
(Right _, Left v) -> high (show (v + 1) ++ printposs pe pe)
(Right p1, Right p2) -> "." ++ printposs p1 p2
in (if r > 1 && r `mod` 3 == 0 then "\n" else "") ++ line
where
high :: String -> String
high s = "\x1B[41;1m" ++ s ++ "\x1B[0m"
pe :: Poss
pe = listPoss []
printposs :: Poss -> Poss -> String
printposs (Poss m1) (Poss m2) =
let s = flip concatMap [0..8] $ \i -> case (m1 !! i, m2 !! i) of
(True, True) -> show (i + 1)
(True, False) -> high "."
(False, True) -> high (show (i + 1))
(False, False) -> " "
in "(" ++ s ++ ")"
data Action = AResolve Int Value Reason
| AScratch Int Value Reason
deriving (Show)
data Reason = RCell | RRow | RCol | RBlock
| RCellI Int | RRowI Int | RColI Int | RBlockI Int
| RCombine Reason Reason
deriving (Show)
type SM = Writer [Action]
reasonReg :: Region -> Reason
reasonReg (Cell i _) = RCellI i
reasonReg (Row r _) = RRowI r
reasonReg (Col c _) = RColI c
reasonReg (Block b _) = RBlockI b
writeAction :: Action -> String
writeAction (AResolve i n reason) =
"Resolved cell " ++ actionCellString i ++ " to value " ++ show (n + 1) ++ " (" ++ writeReason reason ++ ")"
writeAction (AScratch i n reason) =
"Scratched possibility for " ++ show (n + 1) ++ " in cell " ++ actionCellString i ++ " (" ++ writeReason reason ++ ")"
actionCellString :: Int -> String
actionCellString i = "(" ++ show (i `mod` 9) ++ "," ++ show (i `div` 9) ++ ")"
writeReason :: Reason -> String
writeReason RCell = "cell"
writeReason RRow = "row"
writeReason RCol = "column"
writeReason RBlock = "block"
writeReason (RCellI i) = "situation in cell " ++ show i
writeReason (RRowI i) = "situation in row " ++ show i
writeReason (RColI i) = "situation in column " ++ show i
writeReason (RBlockI i) = "situation in block " ++ show i
writeReason (RCombine a b) = writeReason a ++ "; " ++ writeReason b
scratchInRegionExcept :: Value -> Region -> Region -> Reason -> SM Sudoku
scratchInRegionExcept val reg except reason =
foldM (\su i ->
let cl = cell i (adaptRegion reg su)
in if cl `cellIsIn` except
then return su
else if val `possElem` possOf cl
then let su' = maskPoss cl (possMakeAllExcept val)
in tell [AScratch (indexOf cl) val reason] >> return su'
else return su)
(sudokuOf reg) (indexRange reg)
scratchPossBasic :: Sudoku -> (Sudoku, [Action])
scratchPossBasic su =
let su1 = foldl (\su' regc -> scratchPossBasicRegion (regc su'))
su (concat [[Row i, Col i, Block i] | i <- [0..8]])
in (su1, [])
scratchPossBasicRegion :: Region -> Sudoku
scratchPossBasicRegion reg = maskPoss reg (listPoss $ [0..8] \\ values reg)
scratchAroundCell :: Region -> Sudoku
scratchAroundCell cl@(Cell _ _) =
let su1 = scratchPossBasicRegion (rowOf cl)
su2 = scratchPossBasicRegion (colOf (adaptRegion cl su1))
su3 = scratchPossBasicRegion (blockOf (adaptRegion cl su2))
in su3
scratchPossIndirectB :: Sudoku -> (Sudoku, [Action])
scratchPossIndirectB su = runWriter $ foldM bfunc su [0..8]
where
bfunc :: Sudoku -> Int -> SM Sudoku
bfunc su' bi =
let rowAllowed = flip map [0..2] $
\i -> [possOf $ cell (3 * i + j) (Block bi su') | j <- [0..2]]
colAllowed = flip map [0..2] $
\i -> [possOf $ cell (3 * j + i) (Block bi su') | j <- [0..2]]
rowIndices = scratchPairsFromAllowed rowAllowed
colIndices = scratchPairsFromAllowed colAllowed
in do
rowsu <- foldM (\su1 (i,n) -> -- i: row number in block; n: value
scratchInRegionExcept n (rowOf (cell (3 * i) (Block bi su1)))
(Block bi su1) (RCombine (reasonReg (Block bi su1)) RRow))
su' rowIndices
colsu <- foldM (\su1 (i,n) -> -- i: row number in block; n: value
scratchInRegionExcept n (colOf (cell i (Block bi su1)))
(Block bi su1) (RCombine (reasonReg (Block bi su1)) RCol))
rowsu colIndices
return colsu
-- return [(index, n)] for all the n that occur in only one blockrow
scratchPairsFromAllowed :: [[Poss]] -> [(Int, Value)]
scratchPairsFromAllowed plists =
let allowed = map (foldl1 possOr) plists
in catMaybes $
map (\(mi,n) -> maybe Nothing (\i -> Just (i,n)) mi) $
-- v [(Just index if n exists in only one blockrow and else Nothing, n)]
zip (map (possGetIfInOne allowed) [0..8]) [0..8]
resolveCells :: Sudoku -> (Sudoku, [Action])
resolveCells su = runWriter $ foldM func su [0..80]
where
func :: Sudoku -> Int -> SM Sudoku
func su' i = case possList (su' `atp` i) of
[n] -> do
tell [AResolve i n RCell]
let su1 = updateValue i n su'
return $ scratchAroundCell (cell i su1)
_ -> return su'
resolveRegions :: Sudoku -> (Sudoku, [Action])
resolveRegions su = runWriter $ foldM func su [f i | f <- [Row, Col, Block], i <- [0..8]]
where
func :: Sudoku -> (Sudoku -> Region) -> SM Sudoku
func su' regc =
foldM (\su1 n ->
let reg = regc su1
ps = map possOf [cell i reg | i <- indexRange reg]
in case possGetIfInOne ps n of
Nothing -> return su1
Just i -> do
let su_i = indexOf (cell i reg)
tell [AResolve su_i n (reasonReg reg)]
let su2 = updateValue i n reg
return $ scratchAroundCell (cell su_i su2))
su' [0..8]
operations :: [Sudoku -> (Sudoku, [Action])]
operations = [
scratchPossBasic, scratchPossIndirectB,
resolveCells,
resolveRegions]
solve :: Sudoku -> [(Sudoku, [Action])]
solve su =
let l = tail $ go su operations
(su', _) = last l
in if su' == su then [] else l ++ solve su'
where
go :: Sudoku -> [Sudoku -> (Sudoku, [Action])] -> [(Sudoku, [Action])]
go su1 ops = scanl (\(su2, _) op -> op su2) (su1, []) ops
main :: IO ()
main = do
su <- liftM readSudoku getContents
let useBT = True
btSols = backtrackSolve su
when useBT $
case btSols of
[] -> do
die "Cannot solve sudoku using backtracking"
list -> do
putStrLn $ "Backtracking gave " ++ show (length list) ++ " solutions:"
forM_ list $ \res -> do
putStrLn $ writeSudoku res
putStr "\n"
let reslist = (su, []) : solve su
suRes = fst (last reslist)
putStrLn (writeSudokuFull su)
mapM_ (\((su', acts), (prevsu, _)) -> do
putStr "\n\n"
mapM_ (putStrLn . writeAction) acts
-- print acts
putStrLn (writeSudokuDiff prevsu su'))
(zip (tail reslist) reslist)
putStrLn (writeSudoku suRes)
putStr "\n"
when useBT $
when (length btSols /= 1 || suRes /= btSols !! 0) $
die "Incorrectly solved!"
|