aboutsummaryrefslogtreecommitdiff
path: root/src/Data/Array/Nested/Internal.hs
diff options
context:
space:
mode:
Diffstat (limited to 'src/Data/Array/Nested/Internal.hs')
-rw-r--r--src/Data/Array/Nested/Internal.hs381
1 files changed, 277 insertions, 104 deletions
diff --git a/src/Data/Array/Nested/Internal.hs b/src/Data/Array/Nested/Internal.hs
index 350eb6f..7bd6565 100644
--- a/src/Data/Array/Nested/Internal.hs
+++ b/src/Data/Array/Nested/Internal.hs
@@ -20,6 +20,7 @@
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ViewPatterns #-}
+{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
{-|
@@ -27,9 +28,42 @@ TODO:
* We should be more consistent in whether functions take a 'StaticShX'
argument or a 'KnownShapeX' constraint.
-* Document the choice of using 'INat' for ranks and 'Nat' for shapes. Point
- being that we need to do induction over the former, but the latter need to be
- able to get large.
+* Mikolaj wants these:
+
+ About your wishlist of operations: these are already there
+
+ OR.index
+ OR.append
+ OR.transpose
+
+ These can be easily lifted from the definition for XArray (5min work):
+
+ OR.scalar
+ OR.unScalar
+ OR.constant
+
+ These should not be hard:
+
+ OR.fromList
+ ORB.toList . OR.unravel
+ OR.ravel . ORB.fromList
+ OR.slice
+ OR.rev
+ OR.reshape
+
+ though it's a bit unfortunate that we end up needing toList. Looking in
+ horde-ad I see that you seem to need them to do certain operations in Haskell
+ that orthotope doesn't support?
+
+ For this one we'll need to see to what extent you really need it, and what API
+ you'd need precisely:
+
+ OR.rerank
+
+ and for these we have an API design question:
+
+ OR.toVector
+ OR.fromVector
-}
@@ -52,9 +86,8 @@ import qualified Data.Vector.Storable.Mutable as VSM
import Foreign.Storable (Storable)
import GHC.TypeLits
-import Data.Array.Mixed (XArray, IxX(..), IIxX, ShX(..), IShX, KnownShapeX(..), StaticShX(..), type (++), pattern GHC_SNat)
+import Data.Array.Mixed (XArray, IxX(..), IIxX, ShX(..), IShX, KnownShapeX(..), StaticShX(..), type (++), pattern GHC_SNat, Dict(..), HList(..), pattern SZ, pattern SS, Replicate)
import qualified Data.Array.Mixed as X
-import Data.INat
-- Invariant in the API
@@ -90,35 +123,60 @@ import Data.INat
-- have been marked with [PRIMITIVE ELEMENT TYPES LIST].
-type family Replicate n a where
- Replicate Z a = '[]
- Replicate (S n) a = a : Replicate n a
-
type family MapJust l where
MapJust '[] = '[]
MapJust (x : xs) = Just x : MapJust xs
-lemKnownReplicate :: forall n. KnownINat n => Proxy n -> Dict KnownShapeX (Replicate n Nothing)
-lemKnownReplicate _ = X.lemKnownShapeX (go (inatSing @n))
+
+-- Stupid things that the type checker should be able to figure out in-line, but can't
+
+subst1 :: forall f a b. a :~: b -> f a :~: f b
+subst1 Refl = Refl
+
+subst2 :: forall f c a b. a :~: b -> f a c :~: f b c
+subst2 Refl = Refl
+
+lemAppLeft :: Proxy l -> a :~: b -> a ++ l :~: b ++ l
+lemAppLeft _ Refl = Refl
+
+knownNatSucc :: KnownNat n => Dict KnownNat (n + 1)
+knownNatSucc = Dict
+
+
+lemKnownReplicate :: forall n. KnownNat n => Proxy n -> Dict KnownShapeX (Replicate n Nothing)
+lemKnownReplicate _ = X.lemKnownShapeX (go (natSing @n))
where
- go :: SINat m -> StaticShX (Replicate m Nothing)
+ go :: SNat m -> StaticShX (Replicate m Nothing)
go SZ = ZKSX
- go (SS n) = () :!$? go n
+ go (SS (n :: SNat nm1)) | Refl <- X.lemReplicateSucc @(Nothing @Nat) @nm1 = () :!$? go n
-lemRankReplicate :: forall n. KnownINat n => Proxy n -> X.Rank (Replicate n (Nothing @Nat)) :~: n
-lemRankReplicate _ = go (inatSing @n)
+lemRankReplicate :: forall n. KnownNat n => Proxy n -> X.Rank (Replicate n (Nothing @Nat)) :~: n
+lemRankReplicate _ = go (natSing @n)
where
- go :: SINat m -> X.Rank (Replicate m (Nothing @Nat)) :~: m
+ go :: forall m. SNat m -> X.Rank (Replicate m (Nothing @Nat)) :~: m
go SZ = Refl
- go (SS n) | Refl <- go n = Refl
+ go (SS (n :: SNat nm1))
+ | Refl <- X.lemReplicateSucc @(Nothing @Nat) @nm1
+ , Refl <- go n
+ = Refl
-lemReplicatePlusApp :: forall n m a. KnownINat n => Proxy n -> Proxy m -> Proxy a
- -> Replicate (n +! m) a :~: Replicate n a ++ Replicate m a
-lemReplicatePlusApp _ _ _ = go (inatSing @n)
+lemRankMapJust :: forall sh. KnownShape sh => Proxy sh -> X.Rank (MapJust sh) :~: X.Rank sh
+lemRankMapJust _ = go (knownShape @sh)
where
- go :: SINat n' -> Replicate (n' +! m) a :~: Replicate n' a ++ Replicate m a
+ go :: forall sh'. ShS sh' -> X.Rank (MapJust sh') :~: X.Rank sh'
+ go ZSS = Refl
+ go (_ :$$ sh') | Refl <- go sh' = Refl
+
+lemReplicatePlusApp :: forall n m a. KnownNat n => Proxy n -> Proxy m -> Proxy a
+ -> Replicate (n + m) a :~: Replicate n a ++ Replicate m a
+lemReplicatePlusApp _ _ _ = go (natSing @n)
+ where
+ go :: SNat n' -> Replicate (n' + m) a :~: Replicate n' a ++ Replicate m a
go SZ = Refl
- go (SS n) | Refl <- go n = Refl
+ go (SS (n :: SNat n'm1))
+ | Refl <- X.lemReplicateSucc @a @n'm1
+ , Refl <- go n
+ = sym (X.lemReplicateSucc @a @(n'm1 + m))
shAppSplit :: Proxy sh' -> StaticShX sh -> IShX (sh ++ sh') -> (IShX sh, IShX sh')
shAppSplit _ ZKSX idx = (ZSX, idx)
@@ -494,10 +552,12 @@ mgenerate sh f = case X.enumShape sh of
mvecsWrite sh idx val vecs
mvecsFreeze sh vecs
-mtranspose :: forall sh a. (KnownShapeX sh, Elt a) => [Int] -> Mixed sh a -> Mixed sh a
-mtranspose perm =
- mlift (\(Proxy @sh') -> X.rerankTop (knownShapeX @sh) (knownShapeX @sh) (knownShapeX @sh')
- (X.transpose perm))
+mtranspose :: forall is sh a. (X.Permutation is, X.Rank is <= X.Rank sh, KnownShapeX sh, Elt a) => HList SNat is -> Mixed sh a -> Mixed (X.PermutePrefix is sh) a
+mtranspose perm
+ | Dict <- X.lemKnownShapeX (X.ssxAppend (X.ssxPermute perm (X.ssxTakeLen perm (knownShapeX @sh))) (X.ssxDropLen perm (knownShapeX @sh)))
+ = mlift $ \(Proxy @sh') ->
+ X.rerankTop (knownShapeX @sh) (knownShapeX @(X.PermutePrefix is sh)) (knownShapeX @sh')
+ (X.transpose perm)
mappend :: forall n m sh a. (KnownShapeX sh, KnownShapeX (n : sh), KnownShapeX (m : sh), KnownShapeX (X.AddMaybe n m : sh), Elt a)
=> Mixed (n : sh) a -> Mixed (m : sh) a -> Mixed (X.AddMaybe n m : sh) a
@@ -534,12 +594,32 @@ mconstant :: forall sh a. (KnownShapeX sh, Storable a, PrimElt a)
=> IShX sh -> a -> Mixed sh a
mconstant sh x = fromPrimitive (mconstantP sh x)
-mslice :: (KnownShapeX sh, Elt a) => [(Int, Int)] -> Mixed sh a -> Mixed sh a
-mslice ivs = mlift $ \_ -> X.slice ivs
+mslice :: (KnownShapeX sh, Elt a) => SNat i -> SNat n -> Mixed (Just (i + n + k) : sh) a -> Mixed (Just n : sh) a
+mslice i n = withKnownNat n $ mlift $ \_ -> X.slice i n
+
+msliceU :: (KnownShapeX sh, Elt a) => Int -> Int -> Mixed (Nothing : sh) a -> Mixed (Nothing : sh) a
+msliceU i n = mlift $ \_ -> X.sliceU i n
mrev1 :: (KnownShapeX (n : sh), Elt a) => Mixed (n : sh) a -> Mixed (n : sh) a
mrev1 = mlift $ \_ -> X.rev1
+mreshape :: forall sh sh' a. (KnownShapeX sh, KnownShapeX sh', Elt a)
+ => IShX sh' -> Mixed sh a -> Mixed sh' a
+mreshape sh' = mlift $ \(_ :: Proxy shIn) ->
+ X.reshapePartial (knownShapeX @sh) (knownShapeX @shIn) sh'
+
+masXArrayPrimP :: Mixed sh (Primitive a) -> XArray sh a
+masXArrayPrimP (M_Primitive arr) = arr
+
+masXArrayPrim :: PrimElt a => Mixed sh a -> XArray sh a
+masXArrayPrim = masXArrayPrimP . toPrimitive
+
+mfromXArrayPrimP :: XArray sh a -> Mixed sh (Primitive a)
+mfromXArrayPrimP = M_Primitive
+
+mfromXArrayPrim :: PrimElt a => XArray sh a -> Mixed sh a
+mfromXArrayPrim = fromPrimitive . mfromXArrayPrimP
+
mliftPrim :: (KnownShapeX sh, Storable a)
=> (a -> a)
-> Mixed sh (Primitive a) -> Mixed sh (Primitive a)
@@ -570,18 +650,15 @@ deriving via Mixed sh (Primitive Double) instance KnownShapeX sh => Num (Mixed s
-- | A rank-typed array: the number of dimensions of the array (its /rank/) is
--- represented on the type level as a 'INat'.
+-- represented on the type level as a 'Nat'.
--
-- Valid elements of a ranked arrays are described by the 'Elt' type class.
-- Because 'Ranked' itself is also an instance of 'Elt', nested arrays are
-- supported (and are represented as a single, flattened, struct-of-arrays
-- array internally).
--
--- Note that this 'INat' is not a "GHC.TypeLits" natural, because we want a
--- type-level natural that supports induction.
---
-- 'Ranked' is a newtype around a 'Mixed' of 'Nothing's.
-type Ranked :: INat -> Type -> Type
+type Ranked :: Nat -> Type -> Type
newtype Ranked n a = Ranked (Mixed (Replicate n Nothing) a)
deriving instance Show (Mixed (Replicate n Nothing) a) => Show (Ranked n a)
@@ -611,7 +688,7 @@ newtype instance MixedVecs s sh (Shaped sh' a) = MV_Shaped (MixedVecs s sh (Mixe
-- 'Ranked' and 'Shaped' can already be used at the top level of an array nest;
-- these instances allow them to also be used as elements of arrays, thus
-- making them first-class in the API.
-instance (Elt a, KnownINat n) => Elt (Ranked n a) where
+instance (Elt a, KnownNat n) => Elt (Ranked n a) where
mshape (M_Ranked arr) | Dict <- lemKnownReplicate (Proxy @n) = mshape arr
mindex (M_Ranked arr) i | Dict <- lemKnownReplicate (Proxy @n) = Ranked (mindex arr i)
@@ -732,13 +809,10 @@ lemKnownMapJust _ = X.lemKnownShapeX (go (knownShape @sh))
go ZSS = ZKSX
go (n :$$ sh) = n :!$@ go sh
-lemMapJustPlusApp :: forall sh1 sh2. KnownShape sh1 => Proxy sh1 -> Proxy sh2
+lemCommMapJustApp :: forall sh1 sh2. ShS sh1 -> Proxy sh2
-> MapJust (sh1 ++ sh2) :~: MapJust sh1 ++ MapJust sh2
-lemMapJustPlusApp _ _ = go (knownShape @sh1)
- where
- go :: ShS sh1' -> MapJust (sh1' ++ sh2) :~: MapJust sh1' ++ MapJust sh2
- go ZSS = Refl
- go (_ :$$ sh) | Refl <- go sh = Refl
+lemCommMapJustApp ZSS _ = Refl
+lemCommMapJustApp (_ :$$ sh) p | Refl <- lemCommMapJustApp sh p = Refl
instance (Elt a, KnownShape sh) => Elt (Shaped sh a) where
mshape (M_Shaped arr) | Dict <- lemKnownMapJust (Proxy @sh) = mshape arr
@@ -843,37 +917,37 @@ rewriteMixed Refl x = x
-- ====== API OF RANKED ARRAYS ====== --
-arithPromoteRanked :: forall n a. KnownINat n
+arithPromoteRanked :: forall n a. KnownNat n
=> (forall sh. KnownShapeX sh => Mixed sh a -> Mixed sh a)
-> Ranked n a -> Ranked n a
arithPromoteRanked | Dict <- lemKnownReplicate (Proxy @n) = coerce
-arithPromoteRanked2 :: forall n a. KnownINat n
+arithPromoteRanked2 :: forall n a. KnownNat n
=> (forall sh. KnownShapeX sh => Mixed sh a -> Mixed sh a -> Mixed sh a)
-> Ranked n a -> Ranked n a -> Ranked n a
arithPromoteRanked2 | Dict <- lemKnownReplicate (Proxy @n) = coerce
-instance (KnownINat n, Storable a, Num a) => Num (Ranked n (Primitive a)) where
+instance (KnownNat n, Storable a, Num a) => Num (Ranked n (Primitive a)) where
(+) = arithPromoteRanked2 (+)
(-) = arithPromoteRanked2 (-)
(*) = arithPromoteRanked2 (*)
negate = arithPromoteRanked negate
abs = arithPromoteRanked abs
signum = arithPromoteRanked signum
- fromInteger n = case inatSing @n of
+ fromInteger n = case natSing @n of
SZ -> Ranked (M_Primitive (X.scalar (fromInteger n)))
- SS _ -> error "Data.Array.Nested.fromIntegral(Ranked): \
- \Rank non-zero, use explicit mconstant"
+ _ -> error "Data.Array.Nested.fromIntegral(Ranked): \
+ \Rank non-zero, use explicit mconstant"
-- [PRIMITIVE ELEMENT TYPES LIST] (really, a partial list of just the numeric types)
-deriving via Ranked n (Primitive Int) instance KnownINat n => Num (Ranked n Int)
-deriving via Ranked n (Primitive Double) instance KnownINat n => Num (Ranked n Double)
+deriving via Ranked n (Primitive Int) instance KnownNat n => Num (Ranked n Int)
+deriving via Ranked n (Primitive Double) instance KnownNat n => Num (Ranked n Double)
type role ListR nominal representational
-type ListR :: INat -> Type -> Type
+type ListR :: Nat -> Type -> Type
data ListR n i where
- ZR :: ListR Z i
- (:::) :: forall n {i}. i -> ListR n i -> ListR (S n) i
+ ZR :: ListR 0 i
+ (:::) :: forall n {i}. i -> ListR n i -> ListR (n + 1) i
deriving instance Show i => Show (ListR n i)
deriving instance Eq i => Eq (ListR n i)
deriving instance Ord i => Ord (ListR n i)
@@ -887,23 +961,23 @@ listRToList :: ListR n i -> [i]
listRToList ZR = []
listRToList (i ::: is) = i : listRToList is
-knownListR :: ListR n i -> Dict KnownINat n
+knownListR :: ListR n i -> Dict KnownNat n
knownListR ZR = Dict
-knownListR (_ ::: l) | Dict <- knownListR l = Dict
+knownListR (_ ::: (l :: ListR m i)) | Dict <- knownListR l = knownNatSucc @m
-- | An index into a rank-typed array.
type role IxR nominal representational
-type IxR :: INat -> Type -> Type
+type IxR :: Nat -> Type -> Type
newtype IxR n i = IxR (ListR n i)
deriving (Show, Eq, Ord)
deriving newtype (Functor, Foldable)
-pattern ZIR :: forall n i. () => n ~ Z => IxR n i
+pattern ZIR :: forall n i. () => n ~ 0 => IxR n i
pattern ZIR = IxR ZR
pattern (:.:)
:: forall {n1} {i}.
- forall n. (S n ~ n1)
+ forall n. (n + 1 ~ n1)
=> i -> IxR n i -> IxR n1 i
pattern i :.: sh <- (unconsIxR -> Just (UnconsIxRRes sh i))
where i :.: IxR sh = IxR (i ::: sh)
@@ -911,30 +985,30 @@ pattern i :.: sh <- (unconsIxR -> Just (UnconsIxRRes sh i))
infixr 3 :.:
data UnconsIxRRes i n1 =
- forall n. ((S n) ~ n1) => UnconsIxRRes (IxR n i) i
+ forall n. (n + 1 ~ n1) => UnconsIxRRes (IxR n i) i
unconsIxR :: IxR n1 i -> Maybe (UnconsIxRRes i n1)
unconsIxR (IxR (i ::: sh')) = Just (UnconsIxRRes (IxR sh') i)
unconsIxR (IxR ZR) = Nothing
type IIxR n = IxR n Int
-knownIxR :: IxR n i -> Dict KnownINat n
+knownIxR :: IxR n i -> Dict KnownNat n
knownIxR (IxR sh) = knownListR sh
type role ShR nominal representational
-type ShR :: INat -> Type -> Type
+type ShR :: Nat -> Type -> Type
newtype ShR n i = ShR (ListR n i)
deriving (Show, Eq, Ord)
deriving newtype (Functor, Foldable)
type IShR n = ShR n Int
-pattern ZSR :: forall n i. () => n ~ Z => ShR n i
+pattern ZSR :: forall n i. () => n ~ 0 => ShR n i
pattern ZSR = ShR ZR
pattern (:$:)
:: forall {n1} {i}.
- forall n. (S n ~ n1)
+ forall n. (n + 1 ~ n1)
=> i -> ShR n i -> ShR n1 i
pattern i :$: sh <- (unconsShR -> Just (UnconsShRRes sh i))
where i :$: (ShR sh) = ShR (i ::: sh)
@@ -942,15 +1016,15 @@ pattern i :$: sh <- (unconsShR -> Just (UnconsShRRes sh i))
infixr 3 :$:
data UnconsShRRes i n1 =
- forall n. S n ~ n1 => UnconsShRRes (ShR n i) i
+ forall n. n + 1 ~ n1 => UnconsShRRes (ShR n i) i
unconsShR :: ShR n1 i -> Maybe (UnconsShRRes i n1)
unconsShR (ShR (i ::: sh')) = Just (UnconsShRRes (ShR sh') i)
unconsShR (ShR ZR) = Nothing
-knownShR :: ShR n i -> Dict KnownINat n
+knownShR :: ShR n i -> Dict KnownNat n
knownShR (ShR sh) = knownListR sh
-zeroIxR :: SINat n -> IIxR n
+zeroIxR :: SNat n -> IIxR n
zeroIxR SZ = ZIR
zeroIxR (SS n) = 0 :.: zeroIxR n
@@ -966,18 +1040,18 @@ shCvtXR (n :$? idx) = n :$: shCvtXR idx
ixCvtRX :: IIxR n -> IIxX (Replicate n Nothing)
ixCvtRX ZIR = ZIX
-ixCvtRX (n :.: idx) = n :.? ixCvtRX idx
+ixCvtRX (n :.: (idx :: IxR m Int)) = castWith (subst2 @IxX @Int (X.lemReplicateSucc @(Nothing @Nat) @m)) (n :.? ixCvtRX idx)
shCvtRX :: IShR n -> IShX (Replicate n Nothing)
shCvtRX ZSR = ZSX
-shCvtRX (n :$: idx) = n :$? shCvtRX idx
+shCvtRX (n :$: (idx :: ShR m Int)) = castWith (subst2 @ShX @Int (X.lemReplicateSucc @(Nothing @Nat) @m)) (n :$? shCvtRX idx)
shapeSizeR :: IShR n -> Int
shapeSizeR ZSR = 1
shapeSizeR (n :$: sh) = n * shapeSizeR sh
-rshape :: forall n a. (KnownINat n, Elt a) => Ranked n a -> IShR n
+rshape :: forall n a. (KnownNat n, Elt a) => Ranked n a -> IShR n
rshape (Ranked arr)
| Dict <- lemKnownReplicate (Proxy @n)
, Refl <- lemRankReplicate (Proxy @n)
@@ -986,7 +1060,7 @@ rshape (Ranked arr)
rindex :: Elt a => Ranked n a -> IIxR n -> a
rindex (Ranked arr) idx = mindex arr (ixCvtRX idx)
-rindexPartial :: forall n m a. (KnownINat n, Elt a) => Ranked (n +! m) a -> IIxR n -> Ranked m a
+rindexPartial :: forall n m a. (KnownNat n, Elt a) => Ranked (n + m) a -> IIxR n -> Ranked m a
rindexPartial (Ranked arr) idx =
Ranked (mindexPartial @a @(Replicate n Nothing) @(Replicate m Nothing)
(rewriteMixed (lemReplicatePlusApp (Proxy @n) (Proxy @m) (Proxy @Nothing)) arr)
@@ -1002,47 +1076,54 @@ rgenerate sh f
= Ranked (mgenerate (shCvtRX sh) (f . ixCvtXR))
-- | See the documentation of 'mlift'.
-rlift :: forall n1 n2 a. (KnownINat n2, Elt a)
- => (forall sh' b. KnownShapeX sh' => Proxy sh' -> XArray (Replicate n1 Nothing ++ sh') b -> XArray (Replicate n2 Nothing ++ sh') b)
+rlift :: forall n1 n2 a. (KnownNat n2, Elt a)
+ => (forall sh' b. (KnownShapeX sh', Storable b) => Proxy sh' -> XArray (Replicate n1 Nothing ++ sh') b -> XArray (Replicate n2 Nothing ++ sh') b)
-> Ranked n1 a -> Ranked n2 a
rlift f (Ranked arr)
| Dict <- lemKnownReplicate (Proxy @n2)
= Ranked (mlift f arr)
rsumOuter1P :: forall n a.
- (Storable a, Num a, KnownINat n)
- => Ranked (S n) (Primitive a) -> Ranked n (Primitive a)
+ (Storable a, Num a, KnownNat n)
+ => Ranked (n + 1) (Primitive a) -> Ranked n (Primitive a)
rsumOuter1P (Ranked arr)
| Dict <- lemKnownReplicate (Proxy @n)
+ , Refl <- X.lemReplicateSucc @(Nothing @Nat) @n
= Ranked
. coerce @(XArray (Replicate n 'Nothing) a) @(Mixed (Replicate n 'Nothing) (Primitive a))
. X.sumOuter (() :!$? ZKSX) (knownShapeX @(Replicate n Nothing))
- . coerce @(Mixed (Replicate (S n) Nothing) (Primitive a)) @(XArray (Replicate (S n) Nothing) a)
+ . coerce @(Mixed (Replicate (n + 1) Nothing) (Primitive a)) @(XArray (Replicate (n + 1) Nothing) a)
$ arr
-rsumOuter1 :: forall n a.
- (Storable a, Num a, PrimElt a, KnownINat n)
- => Ranked (S n) a -> Ranked n a
+rsumOuter1 :: forall n a. (Storable a, Num a, PrimElt a, KnownNat n)
+ => Ranked (n + 1) a -> Ranked n a
rsumOuter1 = coerce fromPrimitive . rsumOuter1P @n @a . coerce toPrimitive
-rtranspose :: forall n a. (KnownINat n, Elt a) => [Int] -> Ranked n a -> Ranked n a
-rtranspose perm (Ranked arr)
+rtranspose :: forall n a. (KnownNat n, Elt a) => [Int] -> Ranked n a -> Ranked n a
+rtranspose perm
| Dict <- lemKnownReplicate (Proxy @n)
- = Ranked (mtranspose perm arr)
-
-rappend :: forall n a. (KnownINat n, Elt a)
- => Ranked (S n) a -> Ranked (S n) a -> Ranked (S n) a
-rappend | Dict <- lemKnownReplicate (Proxy @n) = coerce mappend
+ , length perm <= fromIntegral (natVal (Proxy @n))
+ = rlift $ \(Proxy @sh') ->
+ X.transposeUntyped (natSing @n) (knownShapeX @sh') perm
+ | otherwise
+ = error "Data.Array.Nested.rtranspose: Permutation longer than rank of array"
+
+rappend :: forall n a. (KnownNat n, Elt a)
+ => Ranked (n + 1) a -> Ranked (n + 1) a -> Ranked (n + 1) a
+rappend
+ | Dict <- lemKnownReplicate (Proxy @n)
+ , Refl <- X.lemReplicateSucc @(Nothing @Nat) @n
+ = coerce (mappend @Nothing @Nothing @(Replicate n Nothing))
-rscalar :: Elt a => a -> Ranked I0 a
+rscalar :: Elt a => a -> Ranked 0 a
rscalar x = Ranked (mscalar x)
-rfromVectorP :: forall n a. (KnownINat n, Storable a) => IShR n -> VS.Vector a -> Ranked n (Primitive a)
+rfromVectorP :: forall n a. (KnownNat n, Storable a) => IShR n -> VS.Vector a -> Ranked n (Primitive a)
rfromVectorP sh v
| Dict <- lemKnownReplicate (Proxy @n)
= Ranked (mfromVectorP (shCvtRX sh) v)
-rfromVector :: forall n a. (KnownINat n, Storable a, PrimElt a) => IShR n -> VS.Vector a -> Ranked n a
+rfromVector :: forall n a. (KnownNat n, Storable a, PrimElt a) => IShR n -> VS.Vector a -> Ranked n a
rfromVector sh v = coerce fromPrimitive (rfromVectorP sh v)
rtoVectorP :: Storable a => Ranked n (Primitive a) -> VS.Vector a
@@ -1051,37 +1132,63 @@ rtoVectorP = coerce mtoVectorP
rtoVector :: (Storable a, PrimElt a) => Ranked n a -> VS.Vector a
rtoVector = coerce mtoVector
-rfromList1 :: forall n a. (KnownINat n, Elt a) => NonEmpty (Ranked n a) -> Ranked (S n) a
+rfromList1 :: forall n a. (KnownNat n, Elt a) => NonEmpty (Ranked n a) -> Ranked (n + 1) a
rfromList1 l
| Dict <- lemKnownReplicate (Proxy @n)
- = Ranked (mfromList1 (coerce l))
+ , Refl <- X.lemReplicateSucc @(Nothing @Nat) @n
+ = Ranked (mfromList1 @a @Nothing @(Replicate n Nothing) (coerce l))
-rfromList :: Elt a => NonEmpty a -> Ranked I1 a
+rfromList :: Elt a => NonEmpty a -> Ranked 1 a
rfromList = Ranked . mfromList1 . fmap mscalar
-rtoList :: Elt a => Ranked (S n) a -> [Ranked n a]
-rtoList (Ranked arr) = coerce (mtoList1 arr)
+rtoList :: forall n a. Elt a => Ranked (n + 1) a -> [Ranked n a]
+rtoList (Ranked arr)
+ | Refl <- X.lemReplicateSucc @(Nothing @Nat) @n
+ = coerce (mtoList1 @a @Nothing @(Replicate n Nothing) arr)
-rtoList1 :: Elt a => Ranked I1 a -> [a]
+rtoList1 :: Elt a => Ranked 1 a -> [a]
rtoList1 = map runScalar . rtoList
-runScalar :: Elt a => Ranked I0 a -> a
+runScalar :: Elt a => Ranked 0 a -> a
runScalar arr = rindex arr ZIR
-rconstantP :: forall n a. (KnownINat n, Storable a) => IShR n -> a -> Ranked n (Primitive a)
+rconstantP :: forall n a. (KnownNat n, Storable a) => IShR n -> a -> Ranked n (Primitive a)
rconstantP sh x
| Dict <- lemKnownReplicate (Proxy @n)
= Ranked (mconstantP (shCvtRX sh) x)
-rconstant :: forall n a. (KnownINat n, Storable a, PrimElt a)
+rconstant :: forall n a. (KnownNat n, Storable a, PrimElt a)
=> IShR n -> a -> Ranked n a
rconstant sh x = coerce fromPrimitive (rconstantP sh x)
-rslice :: (KnownINat n, Elt a) => [(Int, Int)] -> Ranked n a -> Ranked n a
-rslice ivs = rlift $ \_ -> X.slice ivs
+rslice :: forall n a. (KnownNat n, Elt a) => Int -> Int -> Ranked (n + 1) a -> Ranked (n + 1) a
+rslice i n
+ | Refl <- X.lemReplicateSucc @(Nothing @Nat) @n
+ = rlift $ \_ -> X.sliceU i n
+
+rrev1 :: forall n a. (KnownNat n, Elt a) => Ranked (n + 1) a -> Ranked (n + 1) a
+rrev1 = rlift $ \(Proxy @sh') ->
+ case X.lemReplicateSucc @(Nothing @Nat) @n of
+ Refl -> X.rev1 @Nothing @(Replicate n Nothing ++ sh')
-rrev1 :: (KnownINat n, Elt a) => Ranked (S n) a -> Ranked (S n) a
-rrev1 = rlift $ \_ -> X.rev1
+rreshape :: forall n n' a. (KnownNat n, KnownNat n', Elt a)
+ => IShR n' -> Ranked n a -> Ranked n' a
+rreshape sh' (Ranked arr)
+ | Dict <- lemKnownReplicate (Proxy @n)
+ , Dict <- lemKnownReplicate (Proxy @n')
+ = Ranked (mreshape (shCvtRX sh') arr)
+
+rasXArrayPrimP :: Ranked n (Primitive a) -> XArray (Replicate n Nothing) a
+rasXArrayPrimP (Ranked arr) = masXArrayPrimP arr
+
+rasXArrayPrim :: PrimElt a => Ranked n a -> XArray (Replicate n Nothing) a
+rasXArrayPrim (Ranked arr) = masXArrayPrim arr
+
+rfromXArrayPrimP :: XArray (Replicate n Nothing) a -> Ranked n (Primitive a)
+rfromXArrayPrimP = Ranked . mfromXArrayPrimP
+
+rfromXArrayPrim :: PrimElt a => XArray (Replicate n Nothing) a -> Ranked n a
+rfromXArrayPrim = Ranked . mfromXArrayPrim
-- ====== API OF SHAPED ARRAYS ====== --
@@ -1200,7 +1307,7 @@ sindex (Shaped arr) idx = mindex arr (ixCvtSX idx)
sindexPartial :: forall sh1 sh2 a. (KnownShape sh1, Elt a) => Shaped (sh1 ++ sh2) a -> IIxS sh1 -> Shaped sh2 a
sindexPartial (Shaped arr) idx =
Shaped (mindexPartial @a @(MapJust sh1) @(MapJust sh2)
- (rewriteMixed (lemMapJustPlusApp (Proxy @sh1) (Proxy @sh2)) arr)
+ (rewriteMixed (lemCommMapJustApp (knownShape @sh1) (Proxy @sh2)) arr)
(ixCvtSX idx))
-- | __WARNING__: All values returned from the function must have equal shape.
@@ -1212,7 +1319,7 @@ sgenerate f
-- | See the documentation of 'mlift'.
slift :: forall sh1 sh2 a. (KnownShape sh2, Elt a)
- => (forall sh' b. KnownShapeX sh' => Proxy sh' -> XArray (MapJust sh1 ++ sh') b -> XArray (MapJust sh2 ++ sh') b)
+ => (forall sh' b. (KnownShapeX sh', Storable b) => Proxy sh' -> XArray (MapJust sh1 ++ sh') b -> XArray (MapJust sh2 ++ sh') b)
-> Shaped sh1 a -> Shaped sh2 a
slift f (Shaped arr)
| Dict <- lemKnownMapJust (Proxy @sh2)
@@ -1234,9 +1341,56 @@ ssumOuter1 :: forall sh n a.
=> Shaped (n : sh) a -> Shaped sh a
ssumOuter1 = coerce fromPrimitive . ssumOuter1P @sh @n @a . coerce toPrimitive
-stranspose :: forall sh a. (KnownShape sh, Elt a) => [Int] -> Shaped sh a -> Shaped sh a
+lemCommMapJustTakeLen :: HList SNat is -> ShS sh -> X.TakeLen is (MapJust sh) :~: MapJust (X.TakeLen is sh)
+lemCommMapJustTakeLen HNil _ = Refl
+lemCommMapJustTakeLen (_ `HCons` is) (_ :$$ sh) | Refl <- lemCommMapJustTakeLen is sh = Refl
+lemCommMapJustTakeLen (_ `HCons` _) ZSS = error "TakeLen of empty"
+
+lemCommMapJustDropLen :: HList SNat is -> ShS sh -> X.DropLen is (MapJust sh) :~: MapJust (X.DropLen is sh)
+lemCommMapJustDropLen HNil _ = Refl
+lemCommMapJustDropLen (_ `HCons` is) (_ :$$ sh) | Refl <- lemCommMapJustDropLen is sh = Refl
+lemCommMapJustDropLen (_ `HCons` _) ZSS = error "DropLen of empty"
+
+lemCommMapJustIndex :: SNat i -> ShS sh -> X.Index i (MapJust sh) :~: Just (X.Index i sh)
+lemCommMapJustIndex SZ (_ :$$ _) = Refl
+lemCommMapJustIndex (SS (i :: SNat i')) ((_ :: SNat n) :$$ (sh :: ShS sh'))
+ | Refl <- lemCommMapJustIndex i sh
+ , Refl <- X.lemIndexSucc (Proxy @i') (Proxy @(Just n)) (Proxy @(MapJust sh'))
+ , Refl <- X.lemIndexSucc (Proxy @i') (Proxy @n) (Proxy @sh')
+ = Refl
+lemCommMapJustIndex _ ZSS = error "Index of empty"
+
+lemCommMapJustPermute :: HList SNat is -> ShS sh -> X.Permute is (MapJust sh) :~: MapJust (X.Permute is sh)
+lemCommMapJustPermute HNil _ = Refl
+lemCommMapJustPermute (i `HCons` is) sh
+ | Refl <- lemCommMapJustPermute is sh
+ , Refl <- lemCommMapJustIndex i sh
+ = Refl
+
+shTakeLen :: HList SNat is -> ShS sh -> ShS (X.TakeLen is sh)
+shTakeLen HNil _ = ZSS
+shTakeLen (_ `HCons` is) (n :$$ sh) = n :$$ shTakeLen is sh
+shTakeLen (_ `HCons` _) ZSS = error "Permutation longer than shape"
+
+shPermute :: HList SNat is -> ShS sh -> ShS (X.Permute is sh)
+shPermute HNil _ = ZSS
+shPermute (i `HCons` (is :: HList SNat is')) (sh :: ShS sh) = shIndex (Proxy @is') (Proxy @sh) i sh (shPermute is sh)
+
+shIndex :: Proxy is -> Proxy shT -> SNat i -> ShS sh -> ShS (X.Permute is shT) -> ShS (X.Index i sh : X.Permute is shT)
+shIndex _ _ SZ (n :$$ _) rest = n :$$ rest
+shIndex p pT (SS (i :: SNat i')) ((_ :: SNat n) :$$ (sh :: ShS sh')) rest
+ | Refl <- X.lemIndexSucc (Proxy @i') (Proxy @n) (Proxy @sh')
+ = shIndex p pT i sh rest
+shIndex _ _ _ ZSS _ = error "Index into empty shape"
+
+stranspose :: forall is sh a. (X.Permutation is, X.Rank is <= X.Rank sh, KnownShape sh, Elt a) => HList SNat is -> Shaped sh a -> Shaped (X.PermutePrefix is sh) a
stranspose perm (Shaped arr)
| Dict <- lemKnownMapJust (Proxy @sh)
+ , Refl <- lemRankMapJust (Proxy @sh)
+ , Refl <- lemCommMapJustTakeLen perm (knownShape @sh)
+ , Refl <- lemCommMapJustDropLen perm (knownShape @sh)
+ , Refl <- lemCommMapJustPermute perm (shTakeLen perm (knownShape @sh))
+ , Refl <- lemCommMapJustApp (shPermute perm (shTakeLen perm (knownShape @sh))) (Proxy @(X.DropLen is sh))
= Shaped (mtranspose perm arr)
sappend :: forall n m sh a. (KnownNat n, KnownNat m, KnownShape sh, Elt a)
@@ -1287,8 +1441,27 @@ sconstant :: forall sh a. (KnownShape sh, Storable a, PrimElt a)
=> a -> Shaped sh a
sconstant x = coerce fromPrimitive (sconstantP @sh x)
-sslice :: (KnownShape sh, Elt a) => [(Int, Int)] -> Shaped sh a -> Shaped sh a
-sslice ivs = slift $ \_ -> X.slice ivs
+sslice :: (KnownShape sh, Elt a) => SNat i -> SNat n -> Shaped (i + n + k : sh) a -> Shaped (n : sh) a
+sslice i n = withKnownNat n $ slift $ \_ -> X.slice i n
srev1 :: (KnownNat n, KnownShape sh, Elt a) => Shaped (n : sh) a -> Shaped (n : sh) a
srev1 = slift $ \_ -> X.rev1
+
+sreshape :: forall sh sh' a. (KnownShape sh, KnownShape sh', Elt a)
+ => ShS sh' -> Shaped sh a -> Shaped sh' a
+sreshape sh' (Shaped arr)
+ | Dict <- lemKnownMapJust (Proxy @sh)
+ , Dict <- lemKnownMapJust (Proxy @sh')
+ = Shaped (mreshape (shCvtSX sh') arr)
+
+sasXArrayPrimP :: Shaped sh (Primitive a) -> XArray (MapJust sh) a
+sasXArrayPrimP (Shaped arr) = masXArrayPrimP arr
+
+sasXArrayPrim :: PrimElt a => Shaped sh a -> XArray (MapJust sh) a
+sasXArrayPrim (Shaped arr) = masXArrayPrim arr
+
+sfromXArrayPrimP :: XArray (MapJust sh) a -> Shaped sh (Primitive a)
+sfromXArrayPrimP = Shaped . mfromXArrayPrimP
+
+sfromXArrayPrim :: PrimElt a => XArray (MapJust sh) a -> Shaped sh a
+sfromXArrayPrim = Shaped . mfromXArrayPrim