diff options
Diffstat (limited to 'src/Data/Array/Nested/Internal')
-rw-r--r-- | src/Data/Array/Nested/Internal/Convert.hs | 86 | ||||
-rw-r--r-- | src/Data/Array/Nested/Internal/Lemmas.hs | 59 | ||||
-rw-r--r-- | src/Data/Array/Nested/Internal/Mixed.hs | 955 | ||||
-rw-r--r-- | src/Data/Array/Nested/Internal/Ranked.hs | 560 | ||||
-rw-r--r-- | src/Data/Array/Nested/Internal/Shape.hs | 693 | ||||
-rw-r--r-- | src/Data/Array/Nested/Internal/Shaped.hs | 496 |
6 files changed, 0 insertions, 2849 deletions
diff --git a/src/Data/Array/Nested/Internal/Convert.hs b/src/Data/Array/Nested/Internal/Convert.hs deleted file mode 100644 index 183d62c..0000000 --- a/src/Data/Array/Nested/Internal/Convert.hs +++ /dev/null @@ -1,86 +0,0 @@ -{-# LANGUAGE DataKinds #-} -{-# LANGUAGE GADTs #-} -{-# LANGUAGE PolyKinds #-} -{-# LANGUAGE ScopedTypeVariables #-} -{-# LANGUAGE TypeApplications #-} -{-# LANGUAGE TypeAbstractions #-} -{-# LANGUAGE TypeOperators #-} -module Data.Array.Nested.Internal.Convert where - -import Control.Category -import Data.Proxy -import Data.Type.Equality - -import Data.Array.Mixed.Lemmas -import Data.Array.Mixed.Shape -import Data.Array.Mixed.Types -import Data.Array.Nested.Internal.Lemmas -import Data.Array.Nested.Internal.Mixed -import Data.Array.Nested.Internal.Ranked -import Data.Array.Nested.Internal.Shape -import Data.Array.Nested.Internal.Shaped - - -stoRanked :: Elt a => Shaped sh a -> Ranked (Rank sh) a -stoRanked sarr@(Shaped arr) - | Refl <- lemRankMapJust (sshape sarr) - = mtoRanked arr - -rcastToShaped :: Elt a => Ranked (Rank sh) a -> ShS sh -> Shaped sh a -rcastToShaped (Ranked arr) targetsh - | Refl <- lemRankReplicate (shxRank (shCvtSX targetsh)) - , Refl <- lemRankMapJust targetsh - = mcastToShaped arr targetsh - --- | The only constructor that performs runtime shape checking is 'CastXS''. --- For the other construtors, the types ensure that the shapes are already --- compatible. To convert between 'Ranked' and 'Shaped', go via 'Mixed'. -data Castable a b where - CastId :: Castable a a - CastCmp :: Castable b c -> Castable a b -> Castable a c - - CastRX :: Castable a b -> Castable (Ranked n a) (Mixed (Replicate n Nothing) b) - CastSX :: Castable a b -> Castable (Shaped sh a) (Mixed (MapJust sh) b) - - CastXR :: Castable a b -> Castable (Mixed sh a) (Ranked (Rank sh) b) - CastXS :: Castable a b -> Castable (Mixed (MapJust sh) a) (Shaped sh b) - CastXS' :: (Rank sh ~ Rank sh', Elt b) => ShS sh' - -> Castable a b -> Castable (Mixed sh a) (Shaped sh' b) - - CastRR :: Castable a b -> Castable (Ranked n a) (Ranked n b) - CastSS :: Castable a b -> Castable (Shaped sh a) (Shaped sh b) - CastXX :: Castable a b -> Castable (Mixed sh a) (Mixed sh b) - -instance Category Castable where - id = CastId - (.) = CastCmp - -castCastable :: (Elt a, Elt b) => Castable a b -> a -> b -castCastable = \c x -> munScalar (go c (mscalar x)) - where - -- The 'esh' is the extension shape: the casting happens under a whole - -- bunch of additional dimensions that it does not touch. These dimensions - -- are 'esh'. - -- The strategy is to unwind step-by-step to a large Mixed array, and to - -- perform the required checks and castings when re-nesting back up. - go :: Castable a b -> Mixed esh a -> Mixed esh b - go CastId x = x - go (CastCmp c1 c2) x = go c1 (go c2 x) - go (CastRX c) (M_Ranked (M_Nest esh x)) = M_Nest esh (go c x) - go (CastSX c) (M_Shaped (M_Nest esh x)) = M_Nest esh (go c x) - go (CastXR @_ @_ @sh c) (M_Nest @esh esh x) = - M_Ranked (M_Nest esh (mcastSafe @(MCastApp esh sh esh (Replicate (Rank sh) Nothing) MCastId MCastForget) Proxy - (go c x))) - go (CastXS c) (M_Nest esh x) = M_Shaped (M_Nest esh (go c x)) - go (CastXS' @sh @sh' sh' c) (M_Nest @esh esh x) - | Refl <- lemRankAppMapJust (Proxy @esh) (Proxy @sh) (Proxy @sh') - = M_Shaped (M_Nest esh (mcast (ssxFromShape (shxAppend esh (shCvtSX sh'))) - (go c x))) - go (CastRR c) (M_Ranked (M_Nest esh x)) = M_Ranked (M_Nest esh (go c x)) - go (CastSS c) (M_Shaped (M_Nest esh x)) = M_Shaped (M_Nest esh (go c x)) - go (CastXX c) (M_Nest esh x) = M_Nest esh (go c x) - - lemRankAppMapJust :: Rank sh ~ Rank sh' - => Proxy esh -> Proxy sh -> Proxy sh' - -> Rank (esh ++ sh) :~: Rank (esh ++ MapJust sh') - lemRankAppMapJust _ _ _ = unsafeCoerceRefl diff --git a/src/Data/Array/Nested/Internal/Lemmas.hs b/src/Data/Array/Nested/Internal/Lemmas.hs deleted file mode 100644 index f894f78..0000000 --- a/src/Data/Array/Nested/Internal/Lemmas.hs +++ /dev/null @@ -1,59 +0,0 @@ -{-# LANGUAGE DataKinds #-} -{-# LANGUAGE GADTs #-} -{-# LANGUAGE ScopedTypeVariables #-} -{-# LANGUAGE TypeApplications #-} -{-# LANGUAGE TypeOperators #-} -module Data.Array.Nested.Internal.Lemmas where - -import Data.Proxy -import Data.Type.Equality -import GHC.TypeLits - -import Data.Array.Mixed.Lemmas -import Data.Array.Mixed.Permutation -import Data.Array.Mixed.Shape -import Data.Array.Mixed.Types -import Data.Array.Nested.Internal.Shape - - -lemRankMapJust :: ShS sh -> Rank (MapJust sh) :~: Rank sh -lemRankMapJust ZSS = Refl -lemRankMapJust (_ :$$ sh') | Refl <- lemRankMapJust sh' = Refl - -lemMapJustApp :: ShS sh1 -> Proxy sh2 - -> MapJust (sh1 ++ sh2) :~: MapJust sh1 ++ MapJust sh2 -lemMapJustApp ZSS _ = Refl -lemMapJustApp (_ :$$ sh) p | Refl <- lemMapJustApp sh p = Refl - -lemTakeLenMapJust :: Perm is -> ShS sh -> TakeLen is (MapJust sh) :~: MapJust (TakeLen is sh) -lemTakeLenMapJust PNil _ = Refl -lemTakeLenMapJust (_ `PCons` is) (_ :$$ sh) | Refl <- lemTakeLenMapJust is sh = Refl -lemTakeLenMapJust (_ `PCons` _) ZSS = error "TakeLen of empty" - -lemDropLenMapJust :: Perm is -> ShS sh -> DropLen is (MapJust sh) :~: MapJust (DropLen is sh) -lemDropLenMapJust PNil _ = Refl -lemDropLenMapJust (_ `PCons` is) (_ :$$ sh) | Refl <- lemDropLenMapJust is sh = Refl -lemDropLenMapJust (_ `PCons` _) ZSS = error "DropLen of empty" - -lemIndexMapJust :: SNat i -> ShS sh -> Index i (MapJust sh) :~: Just (Index i sh) -lemIndexMapJust SZ (_ :$$ _) = Refl -lemIndexMapJust (SS (i :: SNat i')) ((_ :: SNat n) :$$ (sh :: ShS sh')) - | Refl <- lemIndexMapJust i sh - , Refl <- lemIndexSucc (Proxy @i') (Proxy @(Just n)) (Proxy @(MapJust sh')) - , Refl <- lemIndexSucc (Proxy @i') (Proxy @n) (Proxy @sh') - = Refl -lemIndexMapJust _ ZSS = error "Index of empty" - -lemPermuteMapJust :: Perm is -> ShS sh -> Permute is (MapJust sh) :~: MapJust (Permute is sh) -lemPermuteMapJust PNil _ = Refl -lemPermuteMapJust (i `PCons` is) sh - | Refl <- lemPermuteMapJust is sh - , Refl <- lemIndexMapJust i sh - = Refl - -lemKnownMapJust :: forall sh. KnownShS sh => Proxy sh -> Dict KnownShX (MapJust sh) -lemKnownMapJust _ = lemKnownShX (go (knownShS @sh)) - where - go :: ShS sh' -> StaticShX (MapJust sh') - go ZSS = ZKX - go (n :$$ sh) = SKnown n :!% go sh diff --git a/src/Data/Array/Nested/Internal/Mixed.hs b/src/Data/Array/Nested/Internal/Mixed.hs deleted file mode 100644 index ca90889..0000000 --- a/src/Data/Array/Nested/Internal/Mixed.hs +++ /dev/null @@ -1,955 +0,0 @@ -{-# LANGUAGE DataKinds #-} -{-# LANGUAGE DefaultSignatures #-} -{-# LANGUAGE DeriveGeneric #-} -{-# LANGUAGE DerivingVia #-} -{-# LANGUAGE FlexibleContexts #-} -{-# LANGUAGE FlexibleInstances #-} -{-# LANGUAGE ImportQualifiedPost #-} -{-# LANGUAGE InstanceSigs #-} -{-# LANGUAGE RankNTypes #-} -{-# LANGUAGE ScopedTypeVariables #-} -{-# LANGUAGE StandaloneDeriving #-} -{-# LANGUAGE StandaloneKindSignatures #-} -{-# LANGUAGE StrictData #-} -{-# LANGUAGE TypeApplications #-} -{-# LANGUAGE TypeFamilies #-} -{-# LANGUAGE TypeOperators #-} -{-# LANGUAGE UndecidableInstances #-} -{-# LANGUAGE ViewPatterns #-} -module Data.Array.Nested.Internal.Mixed where - -import Prelude hiding (mconcat) - -import Control.DeepSeq (NFData(..)) -import Control.Monad (forM_, when) -import Control.Monad.ST -import Data.Array.RankedS qualified as S -import Data.Bifunctor (bimap) -import Data.Coerce -import Data.Foldable (toList) -import Data.Int -import Data.Kind (Type, Constraint) -import Data.List.NonEmpty (NonEmpty(..)) -import Data.List.NonEmpty qualified as NE -import Data.Proxy -import Data.Type.Equality -import Data.Vector.Storable qualified as VS -import Data.Vector.Storable.Mutable qualified as VSM -import Foreign.C.Types (CInt) -import Foreign.Storable (Storable) -import GHC.Float qualified (log1p, expm1, log1pexp, log1mexp) -import GHC.Generics (Generic) -import GHC.TypeLits -import Unsafe.Coerce (unsafeCoerce) - -import Data.Array.Mixed.XArray (XArray(..)) -import Data.Array.Mixed.XArray qualified as X -import Data.Array.Mixed.Internal.Arith -import Data.Array.Mixed.Shape -import Data.Array.Mixed.Types -import Data.Array.Mixed.Permutation -import Data.Array.Mixed.Lemmas -import Data.Bag - - --- TODO: --- sumAllPrim :: (PrimElt a, NumElt a) => Mixed sh a -> a --- rminIndex1 :: Ranked (n + 1) a -> Ranked n Int --- gather/scatter-like things (most generally, the higher-order variants: accelerate's backpermute/permute) --- After benchmarking: matmul and matvec - - - --- Invariant in the API --- ==================== --- --- In the underlying XArray, there is some shape for elements of an empty --- array. For example, for this array: --- --- arr :: Ranked I3 (Ranked I2 Int, Ranked I1 Float) --- rshape arr == 0 :.: 0 :.: 0 :.: ZIR --- --- the two underlying XArrays have a shape, and those shapes might be anything. --- The invariant is that these element shapes are unobservable in the API. --- (This is possible because you ought to not be able to get to such an element --- without indexing out of bounds.) --- --- Note, though, that the converse situation may arise: the outer array might --- be nonempty but then the inner arrays might. This is fine, an invariant only --- applies if the _outer_ array is empty. --- --- TODO: can we enforce that the elements of an empty (nested) array have --- all-zero shape? --- -> no, because mlift and also any kind of internals probing from outsiders - - --- Primitive element types --- ======================= --- --- There are a few primitive element types; arrays containing elements of such --- type are a newtype over an XArray, which it itself a newtype over a Vector. --- Unfortunately, the setup of the library requires us to list these primitive --- element types multiple times; to aid in extending the list, all these lists --- have been marked with [PRIMITIVE ELEMENT TYPES LIST]. - - --- | Wrapper type used as a tag to attach instances on. The instances on arrays --- of @'Primitive' a@ are more polymorphic than the direct instances for arrays --- of scalars; this means that if @orthotope@ supports an element type @T@ that --- this library does not (directly), it may just work if you use an array of --- @'Primitive' T@ instead. -newtype Primitive a = Primitive a - deriving (Show) - --- | Element types that are primitive; arrays of these types are just a newtype --- wrapper over an array. -class (Storable a, Elt a) => PrimElt a where - fromPrimitive :: Mixed sh (Primitive a) -> Mixed sh a - toPrimitive :: Mixed sh a -> Mixed sh (Primitive a) - - default fromPrimitive :: Coercible (Mixed sh a) (Mixed sh (Primitive a)) => Mixed sh (Primitive a) -> Mixed sh a - fromPrimitive = coerce - - default toPrimitive :: Coercible (Mixed sh (Primitive a)) (Mixed sh a) => Mixed sh a -> Mixed sh (Primitive a) - toPrimitive = coerce - --- [PRIMITIVE ELEMENT TYPES LIST] -instance PrimElt Bool -instance PrimElt Int -instance PrimElt Int64 -instance PrimElt Int32 -instance PrimElt CInt -instance PrimElt Float -instance PrimElt Double -instance PrimElt () - - --- | Mixed arrays: some dimensions are size-typed, some are not. Distributes --- over product-typed elements using a data family so that the full array is --- always in struct-of-arrays format. --- --- Built on top of 'XArray' which is built on top of @orthotope@, meaning that --- dimension permutations (e.g. 'mtranspose') are typically free. --- --- Many of the methods for working on 'Mixed' arrays come from the 'Elt' type --- class. -type Mixed :: [Maybe Nat] -> Type -> Type -data family Mixed sh a --- NOTE: When opening up the Mixed abstraction, you might see dimension sizes --- that you're not supposed to see. In particular, you might see (nonempty) --- sizes of the elements of an empty array, which is information that should --- ostensibly not exist; the full array is still empty. - -data instance Mixed sh (Primitive a) = M_Primitive !(IShX sh) !(XArray sh a) - deriving (Eq, Ord, Generic) - --- [PRIMITIVE ELEMENT TYPES LIST] -newtype instance Mixed sh Bool = M_Bool (Mixed sh (Primitive Bool)) deriving (Eq, Ord, Generic) -newtype instance Mixed sh Int = M_Int (Mixed sh (Primitive Int)) deriving (Eq, Ord, Generic) -newtype instance Mixed sh Int64 = M_Int64 (Mixed sh (Primitive Int64)) deriving (Eq, Ord, Generic) -newtype instance Mixed sh Int32 = M_Int32 (Mixed sh (Primitive Int32)) deriving (Eq, Ord, Generic) -newtype instance Mixed sh CInt = M_CInt (Mixed sh (Primitive CInt)) deriving (Eq, Ord, Generic) -newtype instance Mixed sh Float = M_Float (Mixed sh (Primitive Float)) deriving (Eq, Ord, Generic) -newtype instance Mixed sh Double = M_Double (Mixed sh (Primitive Double)) deriving (Eq, Ord, Generic) -newtype instance Mixed sh () = M_Nil (Mixed sh (Primitive ())) deriving (Eq, Ord, Generic) -- no content, orthotope optimises this (via Vector) --- etc. - -data instance Mixed sh (a, b) = M_Tup2 !(Mixed sh a) !(Mixed sh b) deriving (Generic) --- etc., larger tuples (perhaps use generics to allow arbitrary product types) - -deriving instance (Eq (Mixed sh a), Eq (Mixed sh b)) => Eq (Mixed sh (a, b)) -deriving instance (Ord (Mixed sh a), Ord (Mixed sh b)) => Ord (Mixed sh (a, b)) - -data instance Mixed sh1 (Mixed sh2 a) = M_Nest !(IShX sh1) !(Mixed (sh1 ++ sh2) a) deriving (Generic) - -deriving instance Eq (Mixed (sh1 ++ sh2) a) => Eq (Mixed sh1 (Mixed sh2 a)) -deriving instance Ord (Mixed (sh1 ++ sh2) a) => Ord (Mixed sh1 (Mixed sh2 a)) - - --- | Internal helper data family mirroring 'Mixed' that consists of mutable --- vectors instead of 'XArray's. -type MixedVecs :: Type -> [Maybe Nat] -> Type -> Type -data family MixedVecs s sh a - -newtype instance MixedVecs s sh (Primitive a) = MV_Primitive (VS.MVector s a) - --- [PRIMITIVE ELEMENT TYPES LIST] -newtype instance MixedVecs s sh Bool = MV_Bool (VS.MVector s Bool) -newtype instance MixedVecs s sh Int = MV_Int (VS.MVector s Int) -newtype instance MixedVecs s sh Int64 = MV_Int64 (VS.MVector s Int64) -newtype instance MixedVecs s sh Int32 = MV_Int32 (VS.MVector s Int32) -newtype instance MixedVecs s sh CInt = MV_CInt (VS.MVector s CInt) -newtype instance MixedVecs s sh Double = MV_Double (VS.MVector s Double) -newtype instance MixedVecs s sh Float = MV_Float (VS.MVector s Float) -newtype instance MixedVecs s sh () = MV_Nil (VS.MVector s ()) -- no content, MVector optimises this --- etc. - -data instance MixedVecs s sh (a, b) = MV_Tup2 !(MixedVecs s sh a) !(MixedVecs s sh b) --- etc. - -data instance MixedVecs s sh1 (Mixed sh2 a) = MV_Nest !(IShX sh2) !(MixedVecs s (sh1 ++ sh2) a) - - -showsMixedArray :: (Show a, Elt a) - => String -- ^ fromList prefix: e.g. @rfromListLinear [2,3]@ - -> String -- ^ replicate prefix: e.g. @rreplicate [2,3]@ - -> Int -> Mixed sh a -> ShowS -showsMixedArray fromlistPrefix replicatePrefix d arr = - showParen (d > 10) $ - -- TODO: to avoid ambiguity, we should type-apply the shape to mfromListLinear here - case mtoListLinear arr of - hd : _ : _ - | all (all (== 0) . take (shxLength (mshape arr))) (marrayStrides arr) -> - showString replicatePrefix . showString " " . showsPrec 11 hd - _ -> - showString fromlistPrefix . showString " " . shows (mtoListLinear arr) - -instance (Show a, Elt a) => Show (Mixed sh a) where - showsPrec d arr = - let sh = show (shxToList (mshape arr)) - in showsMixedArray ("mfromListLinear " ++ sh) ("mreplicate " ++ sh) d arr - -instance Elt a => NFData (Mixed sh a) where - rnf = mrnf - - -mliftNumElt1 :: (PrimElt a, PrimElt b) - => (SNat (Rank sh) -> S.Array (Rank sh) a -> S.Array (Rank sh) b) - -> Mixed sh a -> Mixed sh b -mliftNumElt1 f (toPrimitive -> M_Primitive sh (XArray arr)) = fromPrimitive $ M_Primitive sh (XArray (f (shxRank sh) arr)) - -mliftNumElt2 :: (PrimElt a, PrimElt b, PrimElt c) - => (SNat (Rank sh) -> S.Array (Rank sh) a -> S.Array (Rank sh) b -> S.Array (Rank sh) c) - -> Mixed sh a -> Mixed sh b -> Mixed sh c -mliftNumElt2 f (toPrimitive -> M_Primitive sh1 (XArray arr1)) (toPrimitive -> M_Primitive sh2 (XArray arr2)) - | sh1 == sh2 = fromPrimitive $ M_Primitive sh1 (XArray (f (shxRank sh1) arr1 arr2)) - | otherwise = error $ "Data.Array.Nested: Shapes unequal in elementwise Num operation: " ++ show sh1 ++ " vs " ++ show sh2 - -instance (NumElt a, PrimElt a) => Num (Mixed sh a) where - (+) = mliftNumElt2 (liftO2 . numEltAdd) - (-) = mliftNumElt2 (liftO2 . numEltSub) - (*) = mliftNumElt2 (liftO2 . numEltMul) - negate = mliftNumElt1 (liftO1 . numEltNeg) - abs = mliftNumElt1 (liftO1 . numEltAbs) - signum = mliftNumElt1 (liftO1 . numEltSignum) - -- TODO: THIS IS BAD, WE NEED TO REMOVE THIS - fromInteger = error "Data.Array.Nested.fromInteger: Cannot implement fromInteger, use mreplicateScal" - -instance (FloatElt a, PrimElt a) => Fractional (Mixed sh a) where - fromRational _ = error "Data.Array.Nested.fromRational: No singletons available, use explicit mreplicate" - recip = mliftNumElt1 (liftO1 . floatEltRecip) - (/) = mliftNumElt2 (liftO2 . floatEltDiv) - -instance (FloatElt a, PrimElt a) => Floating (Mixed sh a) where - pi = error "Data.Array.Nested.pi: No singletons available, use explicit mreplicate" - exp = mliftNumElt1 (liftO1 . floatEltExp) - log = mliftNumElt1 (liftO1 . floatEltLog) - sqrt = mliftNumElt1 (liftO1 . floatEltSqrt) - - (**) = mliftNumElt2 (liftO2 . floatEltPow) - logBase = mliftNumElt2 (liftO2 . floatEltLogbase) - - sin = mliftNumElt1 (liftO1 . floatEltSin) - cos = mliftNumElt1 (liftO1 . floatEltCos) - tan = mliftNumElt1 (liftO1 . floatEltTan) - asin = mliftNumElt1 (liftO1 . floatEltAsin) - acos = mliftNumElt1 (liftO1 . floatEltAcos) - atan = mliftNumElt1 (liftO1 . floatEltAtan) - sinh = mliftNumElt1 (liftO1 . floatEltSinh) - cosh = mliftNumElt1 (liftO1 . floatEltCosh) - tanh = mliftNumElt1 (liftO1 . floatEltTanh) - asinh = mliftNumElt1 (liftO1 . floatEltAsinh) - acosh = mliftNumElt1 (liftO1 . floatEltAcosh) - atanh = mliftNumElt1 (liftO1 . floatEltAtanh) - log1p = mliftNumElt1 (liftO1 . floatEltLog1p) - expm1 = mliftNumElt1 (liftO1 . floatEltExpm1) - log1pexp = mliftNumElt1 (liftO1 . floatEltLog1pexp) - log1mexp = mliftNumElt1 (liftO1 . floatEltLog1mexp) - -mquotArray, mremArray :: (IntElt a, PrimElt a) => Mixed sh a -> Mixed sh a -> Mixed sh a -mquotArray = mliftNumElt2 (liftO2 . intEltQuot) -mremArray = mliftNumElt2 (liftO2 . intEltRem) - -matan2Array :: (FloatElt a, PrimElt a) => Mixed sh a -> Mixed sh a -> Mixed sh a -matan2Array = mliftNumElt2 (liftO2 . floatEltAtan2) - --- | Allowable element types in a mixed array, and by extension in a 'Ranked' or --- 'Shaped' array. Note the polymorphic instance for 'Elt' of @'Primitive' --- a@; see the documentation for 'Primitive' for more details. -class Elt a where - -- ====== PUBLIC METHODS ====== -- - - mshape :: Mixed sh a -> IShX sh - mindex :: Mixed sh a -> IIxX sh -> a - mindexPartial :: forall sh sh'. Mixed (sh ++ sh') a -> IIxX sh -> Mixed sh' a - mscalar :: a -> Mixed '[] a - - -- | All arrays in the list, even subarrays inside @a@, must have the same - -- shape; if they do not, a runtime error will be thrown. See the - -- documentation of 'mgenerate' for more information about this restriction. - -- Furthermore, the length of the list must correspond with @n@: if @n@ is - -- @Just m@ and @m@ does not equal the length of the list, a runtime error is - -- thrown. - -- - -- Consider also 'mfromListPrim', which can avoid intermediate arrays. - mfromListOuter :: forall sh. NonEmpty (Mixed sh a) -> Mixed (Nothing : sh) a - - mtoListOuter :: Mixed (n : sh) a -> [Mixed sh a] - - -- | Note: this library makes no particular guarantees about the shapes of - -- arrays "inside" an empty array. With 'mlift', 'mlift2' and 'mliftL' you can see the - -- full 'XArray' and as such you can distinguish different empty arrays by - -- the "shapes" of their elements. This information is meaningless, so you - -- should not use it. - mlift :: forall sh1 sh2. - StaticShX sh2 - -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b) - -> Mixed sh1 a -> Mixed sh2 a - - -- | See the documentation for 'mlift'. - mlift2 :: forall sh1 sh2 sh3. - StaticShX sh3 - -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b) - -> Mixed sh1 a -> Mixed sh2 a -> Mixed sh3 a - - -- TODO: mliftL is currently unused. - -- | All arrays in the input must have equal shapes, including subarrays - -- inside their elements. - mliftL :: forall sh1 sh2. - StaticShX sh2 - -> (forall sh' b. Storable b => StaticShX sh' -> NonEmpty (XArray (sh1 ++ sh') b) -> NonEmpty (XArray (sh2 ++ sh') b)) - -> NonEmpty (Mixed sh1 a) -> NonEmpty (Mixed sh2 a) - - mcastPartial :: forall sh1 sh2 sh'. Rank sh1 ~ Rank sh2 - => StaticShX sh1 -> StaticShX sh2 -> Proxy sh' -> Mixed (sh1 ++ sh') a -> Mixed (sh2 ++ sh') a - - mtranspose :: forall is sh. (IsPermutation is, Rank is <= Rank sh) - => Perm is -> Mixed sh a -> Mixed (PermutePrefix is sh) a - - -- | All arrays in the input must have equal shapes, including subarrays - -- inside their elements. - mconcat :: NonEmpty (Mixed (Nothing : sh) a) -> Mixed (Nothing : sh) a - - mrnf :: Mixed sh a -> () - - -- ====== PRIVATE METHODS ====== -- - - -- | Tree giving the shape of every array component. - type ShapeTree a - - mshapeTree :: a -> ShapeTree a - - mshapeTreeEq :: Proxy a -> ShapeTree a -> ShapeTree a -> Bool - - mshapeTreeEmpty :: Proxy a -> ShapeTree a -> Bool - - mshowShapeTree :: Proxy a -> ShapeTree a -> String - - -- | Returns the stride vector of each underlying component array making up - -- this mixed array. - marrayStrides :: Mixed sh a -> Bag [Int] - - -- | Given the shape of this array, an index and a value, write the value at - -- that index in the vectors. - mvecsWrite :: IShX sh -> IIxX sh -> a -> MixedVecs s sh a -> ST s () - - -- | Given the shape of this array, an index and a value, write the value at - -- that index in the vectors. - mvecsWritePartial :: IShX (sh ++ sh') -> IIxX sh -> Mixed sh' a -> MixedVecs s (sh ++ sh') a -> ST s () - - -- | Given the shape of this array, finalise the vectors into 'XArray's. - mvecsFreeze :: IShX sh -> MixedVecs s sh a -> ST s (Mixed sh a) - - --- | Element types for which we have evidence of the (static part of the) shape --- in a type class constraint. Compare the instance contexts of the instances --- of this class with those of 'Elt': some instances have an additional --- "known-shape" constraint. --- --- This class is (currently) only required for 'mgenerate', --- 'Data.Array.Nested.Ranked.rgenerate' and --- 'Data.Array.Nested.Shaped.sgenerate'. -class Elt a => KnownElt a where - -- | Create an empty array. The given shape must have size zero; this may or may not be checked. - memptyArrayUnsafe :: IShX sh -> Mixed sh a - - -- | Create uninitialised vectors for this array type, given the shape of - -- this vector and an example for the contents. - mvecsUnsafeNew :: IShX sh -> a -> ST s (MixedVecs s sh a) - - mvecsNewEmpty :: Proxy a -> ST s (MixedVecs s sh a) - - --- Arrays of scalars are basically just arrays of scalars. -instance Storable a => Elt (Primitive a) where - mshape (M_Primitive sh _) = sh - mindex (M_Primitive _ a) i = Primitive (X.index a i) - mindexPartial (M_Primitive sh a) i = M_Primitive (shxDropIx sh i) (X.indexPartial a i) - mscalar (Primitive x) = M_Primitive ZSX (X.scalar x) - mfromListOuter l@(arr1 :| _) = - let sh = SUnknown (length l) :$% mshape arr1 - in M_Primitive sh (X.fromListOuter (ssxFromShape sh) (map (\(M_Primitive _ a) -> a) (toList l))) - mtoListOuter (M_Primitive sh arr) = map (M_Primitive (shxTail sh)) (X.toListOuter arr) - - mlift :: forall sh1 sh2. - StaticShX sh2 - -> (StaticShX '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a) - -> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a) - mlift ssh2 f (M_Primitive _ a) - | Refl <- lemAppNil @sh1 - , Refl <- lemAppNil @sh2 - , let result = f ZKX a - = M_Primitive (X.shape ssh2 result) result - - mlift2 :: forall sh1 sh2 sh3. - StaticShX sh3 - -> (StaticShX '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a -> XArray (sh3 ++ '[]) a) - -> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a) -> Mixed sh3 (Primitive a) - mlift2 ssh3 f (M_Primitive _ a) (M_Primitive _ b) - | Refl <- lemAppNil @sh1 - , Refl <- lemAppNil @sh2 - , Refl <- lemAppNil @sh3 - , let result = f ZKX a b - = M_Primitive (X.shape ssh3 result) result - - mliftL :: forall sh1 sh2. - StaticShX sh2 - -> (forall sh' b. Storable b => StaticShX sh' -> NonEmpty (XArray (sh1 ++ sh') b) -> NonEmpty (XArray (sh2 ++ sh') b)) - -> NonEmpty (Mixed sh1 (Primitive a)) -> NonEmpty (Mixed sh2 (Primitive a)) - mliftL ssh2 f l - | Refl <- lemAppNil @sh1 - , Refl <- lemAppNil @sh2 - = fmap (\arr -> M_Primitive (X.shape ssh2 arr) arr) $ - f ZKX (fmap (\(M_Primitive _ arr) -> arr) l) - - mcastPartial :: forall sh1 sh2 sh'. Rank sh1 ~ Rank sh2 - => StaticShX sh1 -> StaticShX sh2 -> Proxy sh' -> Mixed (sh1 ++ sh') (Primitive a) -> Mixed (sh2 ++ sh') (Primitive a) - mcastPartial ssh1 ssh2 _ (M_Primitive sh1' arr) = - let (sh1, sh') = shxSplitApp (Proxy @sh') ssh1 sh1' - sh2 = shxCast' sh1 ssh2 - in M_Primitive (shxAppend sh2 sh') (X.cast ssh1 sh2 (ssxFromShape sh') arr) - - mtranspose perm (M_Primitive sh arr) = - M_Primitive (shxPermutePrefix perm sh) - (X.transpose (ssxFromShape sh) perm arr) - - mconcat :: forall sh. NonEmpty (Mixed (Nothing : sh) (Primitive a)) -> Mixed (Nothing : sh) (Primitive a) - mconcat l@(M_Primitive (_ :$% sh) _ :| _) = - let result = X.concat (ssxFromShape sh) (fmap (\(M_Primitive _ arr) -> arr) l) - in M_Primitive (X.shape (SUnknown () :!% ssxFromShape sh) result) result - - mrnf (M_Primitive sh a) = rnf sh `seq` rnf a - - type ShapeTree (Primitive a) = () - mshapeTree _ = () - mshapeTreeEq _ () () = True - mshapeTreeEmpty _ () = False - mshowShapeTree _ () = "()" - marrayStrides (M_Primitive _ arr) = BOne (X.arrayStrides arr) - mvecsWrite sh i (Primitive x) (MV_Primitive v) = VSM.write v (ixxToLinear sh i) x - - -- TODO: this use of toVector is suboptimal - mvecsWritePartial - :: forall sh' sh s. - IShX (sh ++ sh') -> IIxX sh -> Mixed sh' (Primitive a) -> MixedVecs s (sh ++ sh') (Primitive a) -> ST s () - mvecsWritePartial sh i (M_Primitive sh' arr) (MV_Primitive v) = do - let arrsh = X.shape (ssxFromShape sh') arr - offset = ixxToLinear sh (ixxAppend i (ixxZero' arrsh)) - VS.copy (VSM.slice offset (shxSize arrsh) v) (X.toVector arr) - - mvecsFreeze sh (MV_Primitive v) = M_Primitive sh . X.fromVector sh <$> VS.freeze v - --- [PRIMITIVE ELEMENT TYPES LIST] -deriving via Primitive Bool instance Elt Bool -deriving via Primitive Int instance Elt Int -deriving via Primitive Int64 instance Elt Int64 -deriving via Primitive Int32 instance Elt Int32 -deriving via Primitive CInt instance Elt CInt -deriving via Primitive Double instance Elt Double -deriving via Primitive Float instance Elt Float -deriving via Primitive () instance Elt () - -instance Storable a => KnownElt (Primitive a) where - memptyArrayUnsafe sh = M_Primitive sh (X.empty sh) - mvecsUnsafeNew sh _ = MV_Primitive <$> VSM.unsafeNew (shxSize sh) - mvecsNewEmpty _ = MV_Primitive <$> VSM.unsafeNew 0 - --- [PRIMITIVE ELEMENT TYPES LIST] -deriving via Primitive Bool instance KnownElt Bool -deriving via Primitive Int instance KnownElt Int -deriving via Primitive Int64 instance KnownElt Int64 -deriving via Primitive Int32 instance KnownElt Int32 -deriving via Primitive CInt instance KnownElt CInt -deriving via Primitive Double instance KnownElt Double -deriving via Primitive Float instance KnownElt Float -deriving via Primitive () instance KnownElt () - --- Arrays of pairs are pairs of arrays. -instance (Elt a, Elt b) => Elt (a, b) where - mshape (M_Tup2 a _) = mshape a - mindex (M_Tup2 a b) i = (mindex a i, mindex b i) - mindexPartial (M_Tup2 a b) i = M_Tup2 (mindexPartial a i) (mindexPartial b i) - mscalar (x, y) = M_Tup2 (mscalar x) (mscalar y) - mfromListOuter l = - M_Tup2 (mfromListOuter ((\(M_Tup2 x _) -> x) <$> l)) - (mfromListOuter ((\(M_Tup2 _ y) -> y) <$> l)) - mtoListOuter (M_Tup2 a b) = zipWith M_Tup2 (mtoListOuter a) (mtoListOuter b) - mlift ssh2 f (M_Tup2 a b) = M_Tup2 (mlift ssh2 f a) (mlift ssh2 f b) - mlift2 ssh3 f (M_Tup2 a b) (M_Tup2 x y) = M_Tup2 (mlift2 ssh3 f a x) (mlift2 ssh3 f b y) - mliftL ssh2 f = - let unzipT2l [] = ([], []) - unzipT2l (M_Tup2 a b : l) = let (l1, l2) = unzipT2l l in (a : l1, b : l2) - unzipT2 (M_Tup2 a b :| l) = let (l1, l2) = unzipT2l l in (a :| l1, b :| l2) - in uncurry (NE.zipWith M_Tup2) . bimap (mliftL ssh2 f) (mliftL ssh2 f) . unzipT2 - - mcastPartial ssh1 sh2 psh' (M_Tup2 a b) = - M_Tup2 (mcastPartial ssh1 sh2 psh' a) (mcastPartial ssh1 sh2 psh' b) - - mtranspose perm (M_Tup2 a b) = M_Tup2 (mtranspose perm a) (mtranspose perm b) - mconcat = - let unzipT2l [] = ([], []) - unzipT2l (M_Tup2 a b : l) = let (l1, l2) = unzipT2l l in (a : l1, b : l2) - unzipT2 (M_Tup2 a b :| l) = let (l1, l2) = unzipT2l l in (a :| l1, b :| l2) - in uncurry M_Tup2 . bimap mconcat mconcat . unzipT2 - - mrnf (M_Tup2 a b) = mrnf a `seq` mrnf b - - type ShapeTree (a, b) = (ShapeTree a, ShapeTree b) - mshapeTree (x, y) = (mshapeTree x, mshapeTree y) - mshapeTreeEq _ (t1, t2) (t1', t2') = mshapeTreeEq (Proxy @a) t1 t1' && mshapeTreeEq (Proxy @b) t2 t2' - mshapeTreeEmpty _ (t1, t2) = mshapeTreeEmpty (Proxy @a) t1 && mshapeTreeEmpty (Proxy @b) t2 - mshowShapeTree _ (t1, t2) = "(" ++ mshowShapeTree (Proxy @a) t1 ++ ", " ++ mshowShapeTree (Proxy @b) t2 ++ ")" - marrayStrides (M_Tup2 a b) = marrayStrides a <> marrayStrides b - mvecsWrite sh i (x, y) (MV_Tup2 a b) = do - mvecsWrite sh i x a - mvecsWrite sh i y b - mvecsWritePartial sh i (M_Tup2 x y) (MV_Tup2 a b) = do - mvecsWritePartial sh i x a - mvecsWritePartial sh i y b - mvecsFreeze sh (MV_Tup2 a b) = M_Tup2 <$> mvecsFreeze sh a <*> mvecsFreeze sh b - -instance (KnownElt a, KnownElt b) => KnownElt (a, b) where - memptyArrayUnsafe sh = M_Tup2 (memptyArrayUnsafe sh) (memptyArrayUnsafe sh) - mvecsUnsafeNew sh (x, y) = MV_Tup2 <$> mvecsUnsafeNew sh x <*> mvecsUnsafeNew sh y - mvecsNewEmpty _ = MV_Tup2 <$> mvecsNewEmpty (Proxy @a) <*> mvecsNewEmpty (Proxy @b) - --- Arrays of arrays are just arrays, but with more dimensions. -instance Elt a => Elt (Mixed sh' a) where - -- TODO: this is quadratic in the nesting depth because it repeatedly - -- truncates the shape vector to one a little shorter. Fix with a - -- moverlongShape method, a prefix of which is mshape. - mshape :: forall sh. Mixed sh (Mixed sh' a) -> IShX sh - mshape (M_Nest sh arr) - = fst (shxSplitApp (Proxy @sh') (ssxFromShape sh) (mshape arr)) - - mindex :: Mixed sh (Mixed sh' a) -> IIxX sh -> Mixed sh' a - mindex (M_Nest _ arr) i = mindexPartial arr i - - mindexPartial :: forall sh1 sh2. - Mixed (sh1 ++ sh2) (Mixed sh' a) -> IIxX sh1 -> Mixed sh2 (Mixed sh' a) - mindexPartial (M_Nest sh arr) i - | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh') - = M_Nest (shxDropIx sh i) (mindexPartial @a @sh1 @(sh2 ++ sh') arr i) - - mscalar = M_Nest ZSX - - mfromListOuter :: forall sh. NonEmpty (Mixed sh (Mixed sh' a)) -> Mixed (Nothing : sh) (Mixed sh' a) - mfromListOuter l@(arr :| _) = - M_Nest (SUnknown (length l) :$% mshape arr) - (mfromListOuter ((\(M_Nest _ a) -> a) <$> l)) - - mtoListOuter (M_Nest sh arr) = map (M_Nest (shxTail sh)) (mtoListOuter arr) - - mlift :: forall sh1 sh2. - StaticShX sh2 - -> (forall shT b. Storable b => StaticShX shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b) - -> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a) - mlift ssh2 f (M_Nest sh1 arr) = - let result = mlift (ssxAppend ssh2 ssh') f' arr - (sh2, _) = shxSplitApp (Proxy @sh') ssh2 (mshape result) - in M_Nest sh2 result - where - ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr))) - - f' :: forall shT b. Storable b => StaticShX shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b - f' sshT - | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT) - , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT) - = f (ssxAppend ssh' sshT) - - mlift2 :: forall sh1 sh2 sh3. - StaticShX sh3 - -> (forall shT b. Storable b => StaticShX shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b -> XArray (sh3 ++ shT) b) - -> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a) -> Mixed sh3 (Mixed sh' a) - mlift2 ssh3 f (M_Nest sh1 arr1) (M_Nest _ arr2) = - let result = mlift2 (ssxAppend ssh3 ssh') f' arr1 arr2 - (sh3, _) = shxSplitApp (Proxy @sh') ssh3 (mshape result) - in M_Nest sh3 result - where - ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr1))) - - f' :: forall shT b. Storable b => StaticShX shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b -> XArray ((sh3 ++ sh') ++ shT) b - f' sshT - | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT) - , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT) - , Refl <- lemAppAssoc (Proxy @sh3) (Proxy @sh') (Proxy @shT) - = f (ssxAppend ssh' sshT) - - mliftL :: forall sh1 sh2. - StaticShX sh2 - -> (forall shT b. Storable b => StaticShX shT -> NonEmpty (XArray (sh1 ++ shT) b) -> NonEmpty (XArray (sh2 ++ shT) b)) - -> NonEmpty (Mixed sh1 (Mixed sh' a)) -> NonEmpty (Mixed sh2 (Mixed sh' a)) - mliftL ssh2 f l@(M_Nest sh1 arr1 :| _) = - let result = mliftL (ssxAppend ssh2 ssh') f' (fmap (\(M_Nest _ arr) -> arr) l) - (sh2, _) = shxSplitApp (Proxy @sh') ssh2 (mshape (NE.head result)) - in fmap (M_Nest sh2) result - where - ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr1))) - - f' :: forall shT b. Storable b => StaticShX shT -> NonEmpty (XArray ((sh1 ++ sh') ++ shT) b) -> NonEmpty (XArray ((sh2 ++ sh') ++ shT) b) - f' sshT - | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT) - , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT) - = f (ssxAppend ssh' sshT) - - mcastPartial :: forall sh1 sh2 shT. Rank sh1 ~ Rank sh2 - => StaticShX sh1 -> StaticShX sh2 -> Proxy shT -> Mixed (sh1 ++ shT) (Mixed sh' a) -> Mixed (sh2 ++ shT) (Mixed sh' a) - mcastPartial ssh1 ssh2 _ (M_Nest sh1T arr) - | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @shT) (Proxy @sh') - , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @shT) (Proxy @sh') - = let (sh1, shT) = shxSplitApp (Proxy @shT) ssh1 sh1T - sh2 = shxCast' sh1 ssh2 - in M_Nest (shxAppend sh2 shT) (mcastPartial ssh1 ssh2 (Proxy @(shT ++ sh')) arr) - - mtranspose :: forall is sh. (IsPermutation is, Rank is <= Rank sh) - => Perm is -> Mixed sh (Mixed sh' a) - -> Mixed (PermutePrefix is sh) (Mixed sh' a) - mtranspose perm (M_Nest sh arr) - | let sh' = shxDropSh @sh @sh' (mshape arr) sh - , Refl <- lemRankApp (ssxFromShape sh) (ssxFromShape sh') - , Refl <- lemLeqPlus (Proxy @(Rank is)) (Proxy @(Rank sh)) (Proxy @(Rank sh')) - , Refl <- lemAppAssoc (Proxy @(Permute is (TakeLen is (sh ++ sh')))) (Proxy @(DropLen is sh)) (Proxy @sh') - , Refl <- lemDropLenApp (Proxy @is) (Proxy @sh) (Proxy @sh') - , Refl <- lemTakeLenApp (Proxy @is) (Proxy @sh) (Proxy @sh') - = M_Nest (shxPermutePrefix perm sh) - (mtranspose perm arr) - - mconcat :: NonEmpty (Mixed (Nothing : sh) (Mixed sh' a)) -> Mixed (Nothing : sh) (Mixed sh' a) - mconcat l@(M_Nest sh1 _ :| _) = - let result = mconcat (fmap (\(M_Nest _ arr) -> arr) l) - in M_Nest (fst (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape result))) result - - mrnf (M_Nest sh arr) = rnf sh `seq` mrnf arr - - type ShapeTree (Mixed sh' a) = (IShX sh', ShapeTree a) - - mshapeTree :: Mixed sh' a -> ShapeTree (Mixed sh' a) - mshapeTree arr = (mshape arr, mshapeTree (mindex arr (ixxZero (ssxFromShape (mshape arr))))) - - mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2 - - mshapeTreeEmpty _ (sh, t) = shxSize sh == 0 && mshapeTreeEmpty (Proxy @a) t - - mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")" - - marrayStrides (M_Nest _ arr) = marrayStrides arr - - mvecsWrite sh idx val (MV_Nest sh' vecs) = mvecsWritePartial (shxAppend sh sh') idx val vecs - - mvecsWritePartial :: forall sh1 sh2 s. - IShX (sh1 ++ sh2) -> IIxX sh1 -> Mixed sh2 (Mixed sh' a) - -> MixedVecs s (sh1 ++ sh2) (Mixed sh' a) - -> ST s () - mvecsWritePartial sh12 idx (M_Nest _ arr) (MV_Nest sh' vecs) - | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh') - = mvecsWritePartial (shxAppend sh12 sh') idx arr vecs - - mvecsFreeze sh (MV_Nest sh' vecs) = M_Nest sh <$> mvecsFreeze (shxAppend sh sh') vecs - -instance (KnownShX sh', KnownElt a) => KnownElt (Mixed sh' a) where - memptyArrayUnsafe sh = M_Nest sh (memptyArrayUnsafe (shxAppend sh (shxCompleteZeros (knownShX @sh')))) - - mvecsUnsafeNew sh example - | shxSize sh' == 0 = mvecsNewEmpty (Proxy @(Mixed sh' a)) - | otherwise = MV_Nest sh' <$> mvecsUnsafeNew (shxAppend sh sh') (mindex example (ixxZero (ssxFromShape sh'))) - where - sh' = mshape example - - mvecsNewEmpty _ = MV_Nest (shxCompleteZeros (knownShX @sh')) <$> mvecsNewEmpty (Proxy @a) - - -memptyArray :: KnownElt a => IShX sh -> Mixed (Just 0 : sh) a -memptyArray sh = memptyArrayUnsafe (SKnown SNat :$% sh) - -mrank :: Elt a => Mixed sh a -> SNat (Rank sh) -mrank = shxRank . mshape - --- | The total number of elements in the array. -msize :: Elt a => Mixed sh a -> Int -msize = shxSize . mshape - --- | Create an array given a size and a function that computes the element at a --- given index. --- --- __WARNING__: It is required that every @a@ returned by the argument to --- 'mgenerate' has the same shape. For example, the following will throw a --- runtime error: --- --- > foo :: Mixed [Nothing] (Mixed [Nothing] Double) --- > foo = mgenerate (10 :.: ZIR) $ \(i :.: ZIR) -> --- > mgenerate (i :.: ZIR) $ \(j :.: ZIR) -> --- > ... --- --- because the size of the inner 'mgenerate' is not always the same (it depends --- on @i@). Nested arrays in @ox-arrays@ are always stored fully flattened, so --- the entire hierarchy (after distributing out tuples) must be a rectangular --- array. The type of 'mgenerate' allows this requirement to be broken very --- easily, hence the runtime check. -mgenerate :: forall sh a. KnownElt a => IShX sh -> (IIxX sh -> a) -> Mixed sh a -mgenerate sh f = case shxEnum sh of - [] -> memptyArrayUnsafe sh - firstidx : restidxs -> - let firstelem = f (ixxZero' sh) - shapetree = mshapeTree firstelem - in if mshapeTreeEmpty (Proxy @a) shapetree - then memptyArrayUnsafe sh - else runST $ do - vecs <- mvecsUnsafeNew sh firstelem - mvecsWrite sh firstidx firstelem vecs - -- TODO: This is likely fine if @a@ is big, but if @a@ is a - -- scalar this array copying inefficient. Should improve this. - forM_ restidxs $ \idx -> do - let val = f idx - when (not (mshapeTreeEq (Proxy @a) (mshapeTree val) shapetree)) $ - error "Data.Array.Nested mgenerate: generated values do not have equal shapes" - mvecsWrite sh idx val vecs - mvecsFreeze sh vecs - -msumOuter1P :: forall sh n a. (Storable a, NumElt a) - => Mixed (n : sh) (Primitive a) -> Mixed sh (Primitive a) -msumOuter1P (M_Primitive (n :$% sh) arr) = - let nssh = fromSMayNat (\_ -> SUnknown ()) SKnown n :!% ZKX - in M_Primitive sh (X.sumOuter nssh (ssxFromShape sh) arr) - -msumOuter1 :: forall sh n a. (NumElt a, PrimElt a) - => Mixed (n : sh) a -> Mixed sh a -msumOuter1 = fromPrimitive . msumOuter1P @sh @n @a . toPrimitive - -msumAllPrim :: (PrimElt a, NumElt a) => Mixed sh a -> a -msumAllPrim (toPrimitive -> M_Primitive sh arr) = X.sumFull (ssxFromShape sh) arr - -mappend :: forall n m sh a. Elt a - => Mixed (n : sh) a -> Mixed (m : sh) a -> Mixed (AddMaybe n m : sh) a -mappend arr1 arr2 = mlift2 (snm :!% ssh) f arr1 arr2 - where - sn :$% sh = mshape arr1 - sm :$% _ = mshape arr2 - ssh = ssxFromShape sh - snm :: SMayNat () SNat (AddMaybe n m) - snm = case (sn, sm) of - (SUnknown{}, _) -> SUnknown () - (SKnown{}, SUnknown{}) -> SUnknown () - (SKnown n, SKnown m) -> SKnown (snatPlus n m) - - f :: forall sh' b. Storable b - => StaticShX sh' -> XArray (n : sh ++ sh') b -> XArray (m : sh ++ sh') b -> XArray (AddMaybe n m : sh ++ sh') b - f ssh' = X.append (ssxAppend ssh ssh') - -mfromVectorP :: forall sh a. Storable a => IShX sh -> VS.Vector a -> Mixed sh (Primitive a) -mfromVectorP sh v = M_Primitive sh (X.fromVector sh v) - -mfromVector :: forall sh a. PrimElt a => IShX sh -> VS.Vector a -> Mixed sh a -mfromVector sh v = fromPrimitive (mfromVectorP sh v) - -mtoVectorP :: Storable a => Mixed sh (Primitive a) -> VS.Vector a -mtoVectorP (M_Primitive _ v) = X.toVector v - -mtoVector :: PrimElt a => Mixed sh a -> VS.Vector a -mtoVector arr = mtoVectorP (toPrimitive arr) - -mfromList1 :: Elt a => NonEmpty a -> Mixed '[Nothing] a -mfromList1 = mfromListOuter . fmap mscalar -- TODO: optimise? - -mfromList1Prim :: PrimElt a => [a] -> Mixed '[Nothing] a -mfromList1Prim l = - let ssh = SUnknown () :!% ZKX - xarr = X.fromList1 ssh l - in fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr - -mtoList1 :: Elt a => Mixed '[n] a -> [a] -mtoList1 = map munScalar . mtoListOuter - -mfromListPrim :: PrimElt a => [a] -> Mixed '[Nothing] a -mfromListPrim l = - let ssh = SUnknown () :!% ZKX - xarr = X.fromList1 ssh l - in fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr - -mfromListPrimLinear :: PrimElt a => IShX sh -> [a] -> Mixed sh a -mfromListPrimLinear sh l = - let M_Primitive _ xarr = toPrimitive (mfromListPrim l) - in fromPrimitive $ M_Primitive sh (X.reshape (SUnknown () :!% ZKX) sh xarr) - --- This forall is there so that a simple type application can constrain the --- shape, in case the user wants to use OverloadedLists for the shape. -mfromListLinear :: forall sh a. Elt a => IShX sh -> NonEmpty a -> Mixed sh a -mfromListLinear sh l = mreshape sh (mfromList1 l) - -mtoListLinear :: Elt a => Mixed sh a -> [a] -mtoListLinear arr = map (mindex arr) (shxEnum (mshape arr)) -- TODO: optimise - -munScalar :: Elt a => Mixed '[] a -> a -munScalar arr = mindex arr ZIX - -mnest :: forall sh sh' a. Elt a => StaticShX sh -> Mixed (sh ++ sh') a -> Mixed sh (Mixed sh' a) -mnest ssh arr = M_Nest (fst (shxSplitApp (Proxy @sh') ssh (mshape arr))) arr - -munNest :: Mixed sh (Mixed sh' a) -> Mixed (sh ++ sh') a -munNest (M_Nest _ arr) = arr - -mzip :: Mixed sh a -> Mixed sh b -> Mixed sh (a, b) -mzip = M_Tup2 - -munzip :: Mixed sh (a, b) -> (Mixed sh a, Mixed sh b) -munzip (M_Tup2 a b) = (a, b) - -mrerankP :: forall sh1 sh2 sh a b. (Storable a, Storable b) - => StaticShX sh -> IShX sh2 - -> (Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive b)) - -> Mixed (sh ++ sh1) (Primitive a) -> Mixed (sh ++ sh2) (Primitive b) -mrerankP ssh sh2 f (M_Primitive sh arr) = - let sh1 = shxDropSSX sh ssh - in M_Primitive (shxAppend (shxTakeSSX (Proxy @sh1) sh ssh) sh2) - (X.rerank ssh (ssxFromShape sh1) (ssxFromShape sh2) - (\a -> let M_Primitive _ r = f (M_Primitive sh1 a) in r) - arr) - --- | See the caveats at @X.rerank@. -mrerank :: forall sh1 sh2 sh a b. (PrimElt a, PrimElt b) - => StaticShX sh -> IShX sh2 - -> (Mixed sh1 a -> Mixed sh2 b) - -> Mixed (sh ++ sh1) a -> Mixed (sh ++ sh2) b -mrerank ssh sh2 f (toPrimitive -> arr) = - fromPrimitive $ mrerankP ssh sh2 (toPrimitive . f . fromPrimitive) arr - -mreplicate :: forall sh sh' a. Elt a - => IShX sh -> Mixed sh' a -> Mixed (sh ++ sh') a -mreplicate sh arr = - let ssh' = ssxFromShape (mshape arr) - in mlift (ssxAppend (ssxFromShape sh) ssh') - (\(sshT :: StaticShX shT) -> - case lemAppAssoc (Proxy @sh) (Proxy @sh') (Proxy @shT) of - Refl -> X.replicate sh (ssxAppend ssh' sshT)) - arr - -mreplicateScalP :: forall sh a. Storable a => IShX sh -> a -> Mixed sh (Primitive a) -mreplicateScalP sh x = M_Primitive sh (X.replicateScal sh x) - -mreplicateScal :: forall sh a. PrimElt a - => IShX sh -> a -> Mixed sh a -mreplicateScal sh x = fromPrimitive (mreplicateScalP sh x) - -mslice :: Elt a => SNat i -> SNat n -> Mixed (Just (i + n + k) : sh) a -> Mixed (Just n : sh) a -mslice i n arr = - let _ :$% sh = mshape arr - in mlift (SKnown n :!% ssxFromShape sh) (\_ -> X.slice i n) arr - -msliceU :: Elt a => Int -> Int -> Mixed (Nothing : sh) a -> Mixed (Nothing : sh) a -msliceU i n arr = mlift (ssxFromShape (mshape arr)) (\_ -> X.sliceU i n) arr - -mrev1 :: Elt a => Mixed (n : sh) a -> Mixed (n : sh) a -mrev1 arr = mlift (ssxFromShape (mshape arr)) (\_ -> X.rev1) arr - -mreshape :: forall sh sh' a. Elt a => IShX sh' -> Mixed sh a -> Mixed sh' a -mreshape sh' arr = - mlift (ssxFromShape sh') - (\sshIn -> X.reshapePartial (ssxFromShape (mshape arr)) sshIn sh') - arr - -mflatten :: Elt a => Mixed sh a -> Mixed '[Flatten sh] a -mflatten arr = mreshape (shxFlatten (mshape arr) :$% ZSX) arr - -miota :: (Enum a, PrimElt a) => SNat n -> Mixed '[Just n] a -miota sn = fromPrimitive $ M_Primitive (SKnown sn :$% ZSX) (X.iota sn) - --- | Throws if the array is empty. -mminIndexPrim :: (PrimElt a, NumElt a) => Mixed sh a -> IIxX sh -mminIndexPrim (toPrimitive -> M_Primitive sh (XArray arr)) = - ixxFromList (ssxFromShape sh) (numEltMinIndex (shxRank sh) (fromO arr)) - --- | Throws if the array is empty. -mmaxIndexPrim :: (PrimElt a, NumElt a) => Mixed sh a -> IIxX sh -mmaxIndexPrim (toPrimitive -> M_Primitive sh (XArray arr)) = - ixxFromList (ssxFromShape sh) (numEltMaxIndex (shxRank sh) (fromO arr)) - -mdot1Inner :: forall sh n a. (PrimElt a, NumElt a) - => Proxy n -> Mixed (sh ++ '[n]) a -> Mixed (sh ++ '[n]) a -> Mixed sh a -mdot1Inner _ (toPrimitive -> M_Primitive sh1 (XArray a)) (toPrimitive -> M_Primitive sh2 (XArray b)) - | Refl <- lemInitApp (Proxy @sh) (Proxy @n) - , Refl <- lemLastApp (Proxy @sh) (Proxy @n) - = case sh1 of - _ :$% _ - | sh1 == sh2 - , Refl <- lemRankApp (ssxInit (ssxFromShape sh1)) (ssxLast (ssxFromShape sh1) :!% ZKX) -> - fromPrimitive $ M_Primitive (shxInit sh1) (XArray (liftO2 (numEltDotprodInner (shxRank (shxInit sh1))) a b)) - | otherwise -> error $ "mdot1Inner: Unequal shapes (" ++ show sh1 ++ " and " ++ show sh2 ++ ")" - ZSX -> error "unreachable" - --- | This has a temporary, suboptimal implementation in terms of 'mflatten'. --- Prefer 'mdot1Inner' if applicable. -mdot :: (PrimElt a, NumElt a) => Mixed sh a -> Mixed sh a -> a -mdot a b = - munScalar $ - mdot1Inner Proxy (fromPrimitive (mflatten (toPrimitive a))) - (fromPrimitive (mflatten (toPrimitive b))) - -mtoXArrayPrimP :: Mixed sh (Primitive a) -> (IShX sh, XArray sh a) -mtoXArrayPrimP (M_Primitive sh arr) = (sh, arr) - -mtoXArrayPrim :: PrimElt a => Mixed sh a -> (IShX sh, XArray sh a) -mtoXArrayPrim = mtoXArrayPrimP . toPrimitive - -mfromXArrayPrimP :: StaticShX sh -> XArray sh a -> Mixed sh (Primitive a) -mfromXArrayPrimP ssh arr = M_Primitive (X.shape ssh arr) arr - -mfromXArrayPrim :: PrimElt a => StaticShX sh -> XArray sh a -> Mixed sh a -mfromXArrayPrim = (fromPrimitive .) . mfromXArrayPrimP - -mliftPrim :: (PrimElt a, PrimElt b) - => (a -> b) - -> Mixed sh a -> Mixed sh b -mliftPrim f (toPrimitive -> M_Primitive sh (X.XArray arr)) = fromPrimitive $ M_Primitive sh (X.XArray (S.mapA f arr)) - -mliftPrim2 :: (PrimElt a, PrimElt b, PrimElt c) - => (a -> b -> c) - -> Mixed sh a -> Mixed sh b -> Mixed sh c -mliftPrim2 f (toPrimitive -> M_Primitive sh (X.XArray arr1)) (toPrimitive -> M_Primitive _ (X.XArray arr2)) = - fromPrimitive $ M_Primitive sh (X.XArray (S.zipWithA f arr1 arr2)) - -mcast :: forall sh1 sh2 a. (Rank sh1 ~ Rank sh2, Elt a) - => StaticShX sh2 -> Mixed sh1 a -> Mixed sh2 a -mcast ssh2 arr - | Refl <- lemAppNil @sh1 - , Refl <- lemAppNil @sh2 - = mcastPartial (ssxFromShape (mshape arr)) ssh2 (Proxy @'[]) arr - --- TODO: This should be `type data` but a bug in GHC 9.10 means that that throws linker errors -data SafeMCastSpec - = MCastId - | MCastApp [Maybe Nat] [Maybe Nat] [Maybe Nat] [Maybe Nat] SafeMCastSpec SafeMCastSpec - | MCastForget - -type SafeMCast :: SafeMCastSpec -> [Maybe Nat] -> [Maybe Nat] -> Constraint -type family SafeMCast spec sh1 sh2 where - SafeMCast MCastId sh sh = () - SafeMCast (MCastApp sh1A sh1B sh2A sh2B specA specB) sh1 sh2 = (sh1 ~ sh1A ++ sh1B, sh2 ~ sh2A ++ sh2B, SafeMCast specA sh1A sh2A, SafeMCast specB sh1B sh2B) - SafeMCast MCastForget sh1 sh2 = sh2 ~ Replicate (Rank sh1) Nothing - --- | This is an O(1) operation: the 'SafeMCast' constraint ensures that --- type-level shape information can only be forgotten, not introduced, and thus --- that no runtime shape checks are required. The @spec@ describes to --- 'SafeMCast' how exactly you intend @sh2@ to be a weakening of @sh1@. --- --- To see how to construct the spec, read the equations of 'SafeMCast' closely. -mcastSafe :: forall spec sh1 sh2 a proxy. SafeMCast spec sh1 sh2 => proxy spec -> Mixed sh1 a -> Mixed sh2 a -mcastSafe _ = unsafeCoerce @(Mixed sh1 a) @(Mixed sh2 a) diff --git a/src/Data/Array/Nested/Internal/Ranked.hs b/src/Data/Array/Nested/Internal/Ranked.hs deleted file mode 100644 index 2aba1bc..0000000 --- a/src/Data/Array/Nested/Internal/Ranked.hs +++ /dev/null @@ -1,560 +0,0 @@ -{-# LANGUAGE DataKinds #-} -{-# LANGUAGE DeriveGeneric #-} -{-# LANGUAGE DerivingVia #-} -{-# LANGUAGE FlexibleContexts #-} -{-# LANGUAGE FlexibleInstances #-} -{-# LANGUAGE GeneralizedNewtypeDeriving #-} -{-# LANGUAGE ImportQualifiedPost #-} -{-# LANGUAGE InstanceSigs #-} -{-# LANGUAGE PolyKinds #-} -{-# LANGUAGE RankNTypes #-} -{-# LANGUAGE ScopedTypeVariables #-} -{-# LANGUAGE StandaloneDeriving #-} -{-# LANGUAGE StandaloneKindSignatures #-} -{-# LANGUAGE TypeApplications #-} -{-# LANGUAGE TypeFamilies #-} -{-# LANGUAGE TypeOperators #-} -{-# LANGUAGE UndecidableInstances #-} -{-# LANGUAGE ViewPatterns #-} -{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-} -{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-} -module Data.Array.Nested.Internal.Ranked where - -import Prelude hiding (mappend, mconcat) - -import Control.DeepSeq (NFData(..)) -import Control.Monad.ST -import Data.Array.RankedS qualified as S -import Data.Bifunctor (first) -import Data.Coerce (coerce) -import Data.Foldable (toList) -import Data.Kind (Type) -import Data.List.NonEmpty (NonEmpty) -import Data.Proxy -import Data.Type.Equality -import Data.Vector.Storable qualified as VS -import Foreign.Storable (Storable) -import GHC.Float qualified (log1p, expm1, log1pexp, log1mexp) -import GHC.Generics (Generic) -import GHC.TypeLits -import GHC.TypeNats qualified as TN - -import Data.Array.Mixed.XArray (XArray(..)) -import Data.Array.Mixed.XArray qualified as X -import Data.Array.Mixed.Lemmas -import Data.Array.Mixed.Permutation -import Data.Array.Mixed.Shape -import Data.Array.Mixed.Types -import Data.Array.Nested.Internal.Mixed -import Data.Array.Nested.Internal.Shape -import Data.Array.Strided.Arith - - --- | A rank-typed array: the number of dimensions of the array (its /rank/) is --- represented on the type level as a 'Nat'. --- --- Valid elements of a ranked arrays are described by the 'Elt' type class. --- Because 'Ranked' itself is also an instance of 'Elt', nested arrays are --- supported (and are represented as a single, flattened, struct-of-arrays --- array internally). --- --- 'Ranked' is a newtype around a 'Mixed' of 'Nothing's. -type Ranked :: Nat -> Type -> Type -newtype Ranked n a = Ranked (Mixed (Replicate n Nothing) a) -deriving instance Eq (Mixed (Replicate n Nothing) a) => Eq (Ranked n a) -deriving instance Ord (Mixed (Replicate n Nothing) a) => Ord (Ranked n a) - -instance (Show a, Elt a) => Show (Ranked n a) where - showsPrec d arr@(Ranked marr) = - let sh = show (toList (rshape arr)) - in showsMixedArray ("rfromListLinear " ++ sh) ("rreplicate " ++ sh) d marr - -instance Elt a => NFData (Ranked n a) where - rnf (Ranked arr) = rnf arr - --- just unwrap the newtype and defer to the general instance for nested arrays -newtype instance Mixed sh (Ranked n a) = M_Ranked (Mixed sh (Mixed (Replicate n Nothing) a)) - deriving (Generic) - -deriving instance Eq (Mixed sh (Mixed (Replicate n Nothing) a)) => Eq (Mixed sh (Ranked n a)) - -newtype instance MixedVecs s sh (Ranked n a) = MV_Ranked (MixedVecs s sh (Mixed (Replicate n Nothing) a)) - --- 'Ranked' and 'Shaped' can already be used at the top level of an array nest; --- these instances allow them to also be used as elements of arrays, thus --- making them first-class in the API. -instance Elt a => Elt (Ranked n a) where - mshape (M_Ranked arr) = mshape arr - mindex (M_Ranked arr) i = Ranked (mindex arr i) - - mindexPartial :: forall sh sh'. Mixed (sh ++ sh') (Ranked n a) -> IIxX sh -> Mixed sh' (Ranked n a) - mindexPartial (M_Ranked arr) i = - coerce @(Mixed sh' (Mixed (Replicate n Nothing) a)) @(Mixed sh' (Ranked n a)) $ - mindexPartial arr i - - mscalar (Ranked x) = M_Ranked (M_Nest ZSX x) - - mfromListOuter :: forall sh. NonEmpty (Mixed sh (Ranked n a)) -> Mixed (Nothing : sh) (Ranked n a) - mfromListOuter l = M_Ranked (mfromListOuter (coerce l)) - - mtoListOuter :: forall m sh. Mixed (m : sh) (Ranked n a) -> [Mixed sh (Ranked n a)] - mtoListOuter (M_Ranked arr) = - coerce @[Mixed sh (Mixed (Replicate n 'Nothing) a)] @[Mixed sh (Ranked n a)] (mtoListOuter arr) - - mlift :: forall sh1 sh2. - StaticShX sh2 - -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b) - -> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a) - mlift ssh2 f (M_Ranked arr) = - coerce @(Mixed sh2 (Mixed (Replicate n Nothing) a)) @(Mixed sh2 (Ranked n a)) $ - mlift ssh2 f arr - - mlift2 :: forall sh1 sh2 sh3. - StaticShX sh3 - -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b) - -> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a) -> Mixed sh3 (Ranked n a) - mlift2 ssh3 f (M_Ranked arr1) (M_Ranked arr2) = - coerce @(Mixed sh3 (Mixed (Replicate n Nothing) a)) @(Mixed sh3 (Ranked n a)) $ - mlift2 ssh3 f arr1 arr2 - - mliftL :: forall sh1 sh2. - StaticShX sh2 - -> (forall sh' b. Storable b => StaticShX sh' -> NonEmpty (XArray (sh1 ++ sh') b) -> NonEmpty (XArray (sh2 ++ sh') b)) - -> NonEmpty (Mixed sh1 (Ranked n a)) -> NonEmpty (Mixed sh2 (Ranked n a)) - mliftL ssh2 f l = - coerce @(NonEmpty (Mixed sh2 (Mixed (Replicate n Nothing) a))) - @(NonEmpty (Mixed sh2 (Ranked n a))) $ - mliftL ssh2 f (coerce l) - - mcastPartial ssh1 ssh2 psh' (M_Ranked arr) = M_Ranked (mcastPartial ssh1 ssh2 psh' arr) - - mtranspose perm (M_Ranked arr) = M_Ranked (mtranspose perm arr) - - mconcat l = M_Ranked (mconcat (coerce l)) - - mrnf (M_Ranked arr) = mrnf arr - - type ShapeTree (Ranked n a) = (IShR n, ShapeTree a) - - mshapeTree (Ranked arr) = first shCvtXR' (mshapeTree arr) - - mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2 - - mshapeTreeEmpty _ (sh, t) = shrSize sh == 0 && mshapeTreeEmpty (Proxy @a) t - - mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")" - - marrayStrides (M_Ranked arr) = marrayStrides arr - - mvecsWrite :: forall sh s. IShX sh -> IIxX sh -> Ranked n a -> MixedVecs s sh (Ranked n a) -> ST s () - mvecsWrite sh idx (Ranked arr) vecs = - mvecsWrite sh idx arr - (coerce @(MixedVecs s sh (Ranked n a)) @(MixedVecs s sh (Mixed (Replicate n Nothing) a)) - vecs) - - mvecsWritePartial :: forall sh sh' s. - IShX (sh ++ sh') -> IIxX sh -> Mixed sh' (Ranked n a) - -> MixedVecs s (sh ++ sh') (Ranked n a) - -> ST s () - mvecsWritePartial sh idx arr vecs = - mvecsWritePartial sh idx - (coerce @(Mixed sh' (Ranked n a)) - @(Mixed sh' (Mixed (Replicate n Nothing) a)) - arr) - (coerce @(MixedVecs s (sh ++ sh') (Ranked n a)) - @(MixedVecs s (sh ++ sh') (Mixed (Replicate n Nothing) a)) - vecs) - - mvecsFreeze :: forall sh s. IShX sh -> MixedVecs s sh (Ranked n a) -> ST s (Mixed sh (Ranked n a)) - mvecsFreeze sh vecs = - coerce @(Mixed sh (Mixed (Replicate n Nothing) a)) - @(Mixed sh (Ranked n a)) - <$> mvecsFreeze sh - (coerce @(MixedVecs s sh (Ranked n a)) - @(MixedVecs s sh (Mixed (Replicate n Nothing) a)) - vecs) - -instance (KnownNat n, KnownElt a) => KnownElt (Ranked n a) where - memptyArrayUnsafe :: forall sh. IShX sh -> Mixed sh (Ranked n a) - memptyArrayUnsafe i - | Dict <- lemKnownReplicate (SNat @n) - = coerce @(Mixed sh (Mixed (Replicate n Nothing) a)) @(Mixed sh (Ranked n a)) $ - memptyArrayUnsafe i - - mvecsUnsafeNew idx (Ranked arr) - | Dict <- lemKnownReplicate (SNat @n) - = MV_Ranked <$> mvecsUnsafeNew idx arr - - mvecsNewEmpty _ - | Dict <- lemKnownReplicate (SNat @n) - = MV_Ranked <$> mvecsNewEmpty (Proxy @(Mixed (Replicate n Nothing) a)) - - -liftRanked1 :: forall n a b. - (Mixed (Replicate n Nothing) a -> Mixed (Replicate n Nothing) b) - -> Ranked n a -> Ranked n b -liftRanked1 = coerce - -liftRanked2 :: forall n a b c. - (Mixed (Replicate n Nothing) a -> Mixed (Replicate n Nothing) b -> Mixed (Replicate n Nothing) c) - -> Ranked n a -> Ranked n b -> Ranked n c -liftRanked2 = coerce - -instance (NumElt a, PrimElt a) => Num (Ranked n a) where - (+) = liftRanked2 (+) - (-) = liftRanked2 (-) - (*) = liftRanked2 (*) - negate = liftRanked1 negate - abs = liftRanked1 abs - signum = liftRanked1 signum - fromInteger = error "Data.Array.Nested(Ranked).fromInteger: No singletons available, use explicit rreplicateScal" - -instance (FloatElt a, PrimElt a) => Fractional (Ranked n a) where - fromRational _ = error "Data.Array.Nested(Ranked).fromRational: No singletons available, use explicit rreplicateScal" - recip = liftRanked1 recip - (/) = liftRanked2 (/) - -instance (FloatElt a, PrimElt a) => Floating (Ranked n a) where - pi = error "Data.Array.Nested(Ranked).pi: No singletons available, use explicit rreplicateScal" - exp = liftRanked1 exp - log = liftRanked1 log - sqrt = liftRanked1 sqrt - (**) = liftRanked2 (**) - logBase = liftRanked2 logBase - sin = liftRanked1 sin - cos = liftRanked1 cos - tan = liftRanked1 tan - asin = liftRanked1 asin - acos = liftRanked1 acos - atan = liftRanked1 atan - sinh = liftRanked1 sinh - cosh = liftRanked1 cosh - tanh = liftRanked1 tanh - asinh = liftRanked1 asinh - acosh = liftRanked1 acosh - atanh = liftRanked1 atanh - log1p = liftRanked1 GHC.Float.log1p - expm1 = liftRanked1 GHC.Float.expm1 - log1pexp = liftRanked1 GHC.Float.log1pexp - log1mexp = liftRanked1 GHC.Float.log1mexp - -rquotArray, rremArray :: (IntElt a, PrimElt a) => Ranked n a -> Ranked n a -> Ranked n a -rquotArray = liftRanked2 mquotArray -rremArray = liftRanked2 mremArray - -ratan2Array :: (FloatElt a, PrimElt a) => Ranked n a -> Ranked n a -> Ranked n a -ratan2Array = liftRanked2 matan2Array - - -remptyArray :: KnownElt a => Ranked 1 a -remptyArray = mtoRanked (memptyArray ZSX) - -rshape :: Elt a => Ranked n a -> IShR n -rshape (Ranked arr) = shCvtXR' (mshape arr) - -rrank :: Elt a => Ranked n a -> SNat n -rrank = shrRank . rshape - --- | The total number of elements in the array. -rsize :: Elt a => Ranked n a -> Int -rsize = shrSize . rshape - -rindex :: Elt a => Ranked n a -> IIxR n -> a -rindex (Ranked arr) idx = mindex arr (ixCvtRX idx) - -rindexPartial :: forall n m a. Elt a => Ranked (n + m) a -> IIxR n -> Ranked m a -rindexPartial (Ranked arr) idx = - Ranked (mindexPartial @a @(Replicate n Nothing) @(Replicate m Nothing) - (castWith (subst2 (lemReplicatePlusApp (ixrRank idx) (Proxy @m) (Proxy @Nothing))) arr) - (ixCvtRX idx)) - --- | __WARNING__: All values returned from the function must have equal shape. --- See the documentation of 'mgenerate' for more details. -rgenerate :: forall n a. KnownElt a => IShR n -> (IIxR n -> a) -> Ranked n a -rgenerate sh f - | sn@SNat <- shrRank sh - , Dict <- lemKnownReplicate sn - , Refl <- lemRankReplicate sn - = Ranked (mgenerate (shCvtRX sh) (f . ixCvtXR)) - --- | See the documentation of 'mlift'. -rlift :: forall n1 n2 a. Elt a - => SNat n2 - -> (forall sh' b. Storable b => StaticShX sh' -> XArray (Replicate n1 Nothing ++ sh') b -> XArray (Replicate n2 Nothing ++ sh') b) - -> Ranked n1 a -> Ranked n2 a -rlift sn2 f (Ranked arr) = Ranked (mlift (ssxFromSNat sn2) f arr) - --- | See the documentation of 'mlift2'. -rlift2 :: forall n1 n2 n3 a. Elt a - => SNat n3 - -> (forall sh' b. Storable b => StaticShX sh' -> XArray (Replicate n1 Nothing ++ sh') b -> XArray (Replicate n2 Nothing ++ sh') b -> XArray (Replicate n3 Nothing ++ sh') b) - -> Ranked n1 a -> Ranked n2 a -> Ranked n3 a -rlift2 sn3 f (Ranked arr1) (Ranked arr2) = Ranked (mlift2 (ssxFromSNat sn3) f arr1 arr2) - -rsumOuter1P :: forall n a. - (Storable a, NumElt a) - => Ranked (n + 1) (Primitive a) -> Ranked n (Primitive a) -rsumOuter1P (Ranked arr) - | Refl <- lemReplicateSucc @(Nothing @Nat) @n - = Ranked (msumOuter1P arr) - -rsumOuter1 :: forall n a. (NumElt a, PrimElt a) - => Ranked (n + 1) a -> Ranked n a -rsumOuter1 = rfromPrimitive . rsumOuter1P . rtoPrimitive - -rsumAllPrim :: (PrimElt a, NumElt a) => Ranked n a -> a -rsumAllPrim (Ranked arr) = msumAllPrim arr - -rtranspose :: forall n a. Elt a => PermR -> Ranked n a -> Ranked n a -rtranspose perm arr - | sn@SNat <- rrank arr - , Dict <- lemKnownReplicate sn - , length perm <= fromIntegral (natVal (Proxy @n)) - = rlift sn - (\ssh' -> X.transposeUntyped (natSing @n) ssh' perm) - arr - | otherwise - = error "Data.Array.Nested.rtranspose: Permutation longer than rank of array" - -rconcat :: forall n a. Elt a => NonEmpty (Ranked (n + 1) a) -> Ranked (n + 1) a -rconcat - | Refl <- lemReplicateSucc @(Nothing @Nat) @n - = coerce mconcat - -rappend :: forall n a. Elt a - => Ranked (n + 1) a -> Ranked (n + 1) a -> Ranked (n + 1) a -rappend arr1 arr2 - | sn@SNat <- rrank arr1 - , Dict <- lemKnownReplicate sn - , Refl <- lemReplicateSucc @(Nothing @Nat) @n - = coerce (mappend @Nothing @Nothing @(Replicate n Nothing)) - arr1 arr2 - -rscalar :: Elt a => a -> Ranked 0 a -rscalar x = Ranked (mscalar x) - -rfromVectorP :: forall n a. Storable a => IShR n -> VS.Vector a -> Ranked n (Primitive a) -rfromVectorP sh v - | Dict <- lemKnownReplicate (shrRank sh) - = Ranked (mfromVectorP (shCvtRX sh) v) - -rfromVector :: forall n a. PrimElt a => IShR n -> VS.Vector a -> Ranked n a -rfromVector sh v = rfromPrimitive (rfromVectorP sh v) - -rtoVectorP :: Storable a => Ranked n (Primitive a) -> VS.Vector a -rtoVectorP = coerce mtoVectorP - -rtoVector :: PrimElt a => Ranked n a -> VS.Vector a -rtoVector = coerce mtoVector - -rfromListOuter :: forall n a. Elt a => NonEmpty (Ranked n a) -> Ranked (n + 1) a -rfromListOuter l - | Refl <- lemReplicateSucc @(Nothing @Nat) @n - = Ranked (mfromListOuter (coerce l :: NonEmpty (Mixed (Replicate n Nothing) a))) - -rfromList1 :: Elt a => NonEmpty a -> Ranked 1 a -rfromList1 l = Ranked (mfromList1 l) - -rfromList1Prim :: PrimElt a => [a] -> Ranked 1 a -rfromList1Prim l = Ranked (mfromList1Prim l) - -rtoListOuter :: forall n a. Elt a => Ranked (n + 1) a -> [Ranked n a] -rtoListOuter (Ranked arr) - | Refl <- lemReplicateSucc @(Nothing @Nat) @n - = coerce (mtoListOuter @a @Nothing @(Replicate n Nothing) arr) - -rtoList1 :: Elt a => Ranked 1 a -> [a] -rtoList1 = map runScalar . rtoListOuter - -rfromListPrim :: PrimElt a => [a] -> Ranked 1 a -rfromListPrim l = - let ssh = SUnknown () :!% ZKX - xarr = X.fromList1 ssh l - in Ranked $ fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr - -rfromListPrimLinear :: PrimElt a => IShR n -> [a] -> Ranked n a -rfromListPrimLinear sh l = - let M_Primitive _ xarr = toPrimitive (mfromListPrim l) - in Ranked $ fromPrimitive $ M_Primitive (shCvtRX sh) (X.reshape (SUnknown () :!% ZKX) (shCvtRX sh) xarr) - -rfromListLinear :: forall n a. Elt a => IShR n -> NonEmpty a -> Ranked n a -rfromListLinear sh l = rreshape sh (rfromList1 l) - -rtoListLinear :: Elt a => Ranked n a -> [a] -rtoListLinear (Ranked arr) = mtoListLinear arr - -rfromOrthotope :: PrimElt a => SNat n -> S.Array n a -> Ranked n a -rfromOrthotope sn arr - | Refl <- lemRankReplicate sn - = let xarr = XArray arr - in Ranked (fromPrimitive (M_Primitive (X.shape (ssxFromSNat sn) xarr) xarr)) - -rtoOrthotope :: PrimElt a => Ranked n a -> S.Array n a -rtoOrthotope (rtoPrimitive -> Ranked (M_Primitive sh (XArray arr))) - | Refl <- lemRankReplicate (shrRank $ shCvtXR' sh) - = arr - -runScalar :: Elt a => Ranked 0 a -> a -runScalar arr = rindex arr ZIR - -rnest :: forall n m a. Elt a => SNat n -> Ranked (n + m) a -> Ranked n (Ranked m a) -rnest n arr - | Refl <- lemReplicatePlusApp n (Proxy @m) (Proxy @(Nothing @Nat)) - = coerce (mnest (ssxFromSNat n) (coerce arr)) - -runNest :: forall n m a. Elt a => Ranked n (Ranked m a) -> Ranked (n + m) a -runNest rarr@(Ranked (M_Ranked (M_Nest _ arr))) - | Refl <- lemReplicatePlusApp (rrank rarr) (Proxy @m) (Proxy @(Nothing @Nat)) - = Ranked arr - -rzip :: Ranked n a -> Ranked n b -> Ranked n (a, b) -rzip = coerce mzip - -runzip :: Ranked n (a, b) -> (Ranked n a, Ranked n b) -runzip = coerce munzip - -rrerankP :: forall n1 n2 n a b. (Storable a, Storable b) - => SNat n -> IShR n2 - -> (Ranked n1 (Primitive a) -> Ranked n2 (Primitive b)) - -> Ranked (n + n1) (Primitive a) -> Ranked (n + n2) (Primitive b) -rrerankP sn sh2 f (Ranked arr) - | Refl <- lemReplicatePlusApp sn (Proxy @n1) (Proxy @(Nothing @Nat)) - , Refl <- lemReplicatePlusApp sn (Proxy @n2) (Proxy @(Nothing @Nat)) - = Ranked (mrerankP (ssxFromSNat sn) (shCvtRX sh2) - (\a -> let Ranked r = f (Ranked a) in r) - arr) - --- | If there is a zero-sized dimension in the @n@-prefix of the shape of the --- input array, then there is no way to deduce the full shape of the output --- array (more precisely, the @n2@ part): that could only come from calling --- @f@, and there are no subarrays to call @f@ on. @orthotope@ errors out in --- this case; we choose to fill the @n2@ part of the output shape with zeros. --- --- For example, if: --- --- @ --- arr :: Ranked 5 Int -- of shape [3, 0, 4, 2, 21] --- f :: Ranked 2 Int -> Ranked 3 Float --- @ --- --- then: --- --- @ --- rrerank _ _ _ f arr :: Ranked 5 Float --- @ --- --- and this result will have shape @[3, 0, 4, 0, 0, 0]@. Note that the --- "reranked" part (the last 3 entries) are zero; we don't know if @f@ intended --- to return an array with shape all-0 here (it probably didn't), but there is --- no better number to put here absent a subarray of the input to pass to @f@. -rrerank :: forall n1 n2 n a b. (PrimElt a, PrimElt b) - => SNat n -> IShR n2 - -> (Ranked n1 a -> Ranked n2 b) - -> Ranked (n + n1) a -> Ranked (n + n2) b -rrerank sn sh2 f (rtoPrimitive -> arr) = - rfromPrimitive $ rrerankP sn sh2 (rtoPrimitive . f . rfromPrimitive) arr - -rreplicate :: forall n m a. Elt a - => IShR n -> Ranked m a -> Ranked (n + m) a -rreplicate sh (Ranked arr) - | Refl <- lemReplicatePlusApp (shrRank sh) (Proxy @m) (Proxy @(Nothing @Nat)) - = Ranked (mreplicate (shCvtRX sh) arr) - -rreplicateScalP :: forall n a. Storable a => IShR n -> a -> Ranked n (Primitive a) -rreplicateScalP sh x - | Dict <- lemKnownReplicate (shrRank sh) - = Ranked (mreplicateScalP (shCvtRX sh) x) - -rreplicateScal :: forall n a. PrimElt a - => IShR n -> a -> Ranked n a -rreplicateScal sh x = rfromPrimitive (rreplicateScalP sh x) - -rslice :: forall n a. Elt a => Int -> Int -> Ranked (n + 1) a -> Ranked (n + 1) a -rslice i n arr - | Refl <- lemReplicateSucc @(Nothing @Nat) @n - = rlift (rrank arr) - (\_ -> X.sliceU i n) - arr - -rrev1 :: forall n a. Elt a => Ranked (n + 1) a -> Ranked (n + 1) a -rrev1 arr = - rlift (rrank arr) - (\(_ :: StaticShX sh') -> - case lemReplicateSucc @(Nothing @Nat) @n of - Refl -> X.rev1 @Nothing @(Replicate n Nothing ++ sh')) - arr - -rreshape :: forall n n' a. Elt a - => IShR n' -> Ranked n a -> Ranked n' a -rreshape sh' rarr@(Ranked arr) - | Dict <- lemKnownReplicate (rrank rarr) - , Dict <- lemKnownReplicate (shrRank sh') - = Ranked (mreshape (shCvtRX sh') arr) - -rflatten :: Elt a => Ranked n a -> Ranked 1 a -rflatten (Ranked arr) = mtoRanked (mflatten arr) - -riota :: (Enum a, PrimElt a, Elt a) => Int -> Ranked 1 a -riota n = TN.withSomeSNat (fromIntegral n) $ mtoRanked . miota - --- | Throws if the array is empty. -rminIndexPrim :: (PrimElt a, NumElt a) => Ranked n a -> IIxR n -rminIndexPrim rarr@(Ranked arr) - | Refl <- lemRankReplicate (rrank (rtoPrimitive rarr)) - = ixCvtXR (mminIndexPrim arr) - --- | Throws if the array is empty. -rmaxIndexPrim :: (PrimElt a, NumElt a) => Ranked n a -> IIxR n -rmaxIndexPrim rarr@(Ranked arr) - | Refl <- lemRankReplicate (rrank (rtoPrimitive rarr)) - = ixCvtXR (mmaxIndexPrim arr) - -rdot1Inner :: forall n a. (PrimElt a, NumElt a) => Ranked (n + 1) a -> Ranked (n + 1) a -> Ranked n a -rdot1Inner arr1 arr2 - | SNat <- rrank arr1 - , Refl <- lemReplicatePlusApp (SNat @n) (Proxy @1) (Proxy @(Nothing @Nat)) - = coerce (mdot1Inner (Proxy @(Nothing @Nat))) arr1 arr2 - --- | This has a temporary, suboptimal implementation in terms of 'mflatten'. --- Prefer 'rdot1Inner' if applicable. -rdot :: (PrimElt a, NumElt a) => Ranked n a -> Ranked n a -> a -rdot = coerce mdot - -rtoXArrayPrimP :: Ranked n (Primitive a) -> (IShR n, XArray (Replicate n Nothing) a) -rtoXArrayPrimP (Ranked arr) = first shCvtXR' (mtoXArrayPrimP arr) - -rtoXArrayPrim :: PrimElt a => Ranked n a -> (IShR n, XArray (Replicate n Nothing) a) -rtoXArrayPrim (Ranked arr) = first shCvtXR' (mtoXArrayPrim arr) - -rfromXArrayPrimP :: SNat n -> XArray (Replicate n Nothing) a -> Ranked n (Primitive a) -rfromXArrayPrimP sn arr = Ranked (mfromXArrayPrimP (ssxFromShape (X.shape (ssxFromSNat sn) arr)) arr) - -rfromXArrayPrim :: PrimElt a => SNat n -> XArray (Replicate n Nothing) a -> Ranked n a -rfromXArrayPrim sn arr = Ranked (mfromXArrayPrim (ssxFromShape (X.shape (ssxFromSNat sn) arr)) arr) - -rfromPrimitive :: PrimElt a => Ranked n (Primitive a) -> Ranked n a -rfromPrimitive (Ranked arr) = Ranked (fromPrimitive arr) - -rtoPrimitive :: PrimElt a => Ranked n a -> Ranked n (Primitive a) -rtoPrimitive (Ranked arr) = Ranked (toPrimitive arr) - -mtoRanked :: forall sh a. Elt a => Mixed sh a -> Ranked (Rank sh) a -mtoRanked arr - | Refl <- lemRankReplicate (shxRank (mshape arr)) - = Ranked (mcast (ssxFromShape (convSh (mshape arr))) arr) - where - convSh :: IShX sh' -> IShX (Replicate (Rank sh') Nothing) - convSh ZSX = ZSX - convSh (smn :$% (sh :: IShX sh'T)) - | Refl <- lemReplicateSucc @(Nothing @Nat) @(Rank sh'T) - = SUnknown (fromSMayNat' smn) :$% convSh sh - -rtoMixed :: forall n a. Ranked n a -> Mixed (Replicate n Nothing) a -rtoMixed (Ranked arr) = arr - --- | A more weakly-typed version of 'rtoMixed' that does a runtime shape --- compatibility check. -rcastToMixed :: (Rank sh ~ n, Elt a) => StaticShX sh -> Ranked n a -> Mixed sh a -rcastToMixed sshx rarr@(Ranked arr) - | Refl <- lemRankReplicate (rrank rarr) - = mcast sshx arr diff --git a/src/Data/Array/Nested/Internal/Shape.hs b/src/Data/Array/Nested/Internal/Shape.hs deleted file mode 100644 index 5d5f8e3..0000000 --- a/src/Data/Array/Nested/Internal/Shape.hs +++ /dev/null @@ -1,693 +0,0 @@ -{-# LANGUAGE DataKinds #-} -{-# LANGUAGE DeriveFoldable #-} -{-# LANGUAGE DeriveFunctor #-} -{-# LANGUAGE DeriveGeneric #-} -{-# LANGUAGE DerivingStrategies #-} -{-# LANGUAGE FlexibleInstances #-} -{-# LANGUAGE GADTs #-} -{-# LANGUAGE GeneralizedNewtypeDeriving #-} -{-# LANGUAGE ImportQualifiedPost #-} -{-# LANGUAGE NoStarIsType #-} -{-# LANGUAGE PatternSynonyms #-} -{-# LANGUAGE PolyKinds #-} -{-# LANGUAGE QuantifiedConstraints #-} -{-# LANGUAGE RankNTypes #-} -{-# LANGUAGE RoleAnnotations #-} -{-# LANGUAGE ScopedTypeVariables #-} -{-# LANGUAGE StandaloneDeriving #-} -{-# LANGUAGE StandaloneKindSignatures #-} -{-# LANGUAGE StrictData #-} -{-# LANGUAGE TypeApplications #-} -{-# LANGUAGE TypeFamilies #-} -{-# LANGUAGE TypeOperators #-} -{-# LANGUAGE UndecidableInstances #-} -{-# LANGUAGE ViewPatterns #-} -{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-} -{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-} -module Data.Array.Nested.Internal.Shape where - -import Control.DeepSeq (NFData (..)) -import Data.Array.Shape qualified as O -import Data.Array.Mixed.Types -import Data.Coerce (coerce) -import Data.Foldable qualified as Foldable -import Data.Functor.Const -import Data.Kind (Type, Constraint) -import Data.Monoid (Sum(..)) -import Data.Proxy -import Data.Type.Equality -import GHC.Exts (withDict) -import GHC.Generics (Generic) -import GHC.IsList (IsList) -import GHC.IsList qualified as IsList -import GHC.TypeLits -import GHC.TypeNats qualified as TN - -import Data.Array.Mixed.Lemmas -import Data.Array.Mixed.Permutation -import Data.Array.Mixed.Shape - - -type role ListR nominal representational -type ListR :: Nat -> Type -> Type -data ListR n i where - ZR :: ListR 0 i - (:::) :: forall n {i}. i -> ListR n i -> ListR (n + 1) i -deriving instance Eq i => Eq (ListR n i) -deriving instance Ord i => Ord (ListR n i) -deriving instance Functor (ListR n) -deriving instance Foldable (ListR n) -infixr 3 ::: - -instance Show i => Show (ListR n i) where - showsPrec _ = listrShow shows - -instance NFData i => NFData (ListR n i) where - rnf ZR = () - rnf (x ::: l) = rnf x `seq` rnf l - -data UnconsListRRes i n1 = - forall n. (n + 1 ~ n1) => UnconsListRRes (ListR n i) i -listrUncons :: ListR n1 i -> Maybe (UnconsListRRes i n1) -listrUncons (i ::: sh') = Just (UnconsListRRes sh' i) -listrUncons ZR = Nothing - --- | This checks only whether the ranks are equal, not whether the actual --- values are. -listrEqRank :: ListR n i -> ListR n' i -> Maybe (n :~: n') -listrEqRank ZR ZR = Just Refl -listrEqRank (_ ::: sh) (_ ::: sh') - | Just Refl <- listrEqRank sh sh' - = Just Refl -listrEqRank _ _ = Nothing - --- | This compares the lists for value equality. -listrEqual :: Eq i => ListR n i -> ListR n' i -> Maybe (n :~: n') -listrEqual ZR ZR = Just Refl -listrEqual (i ::: sh) (j ::: sh') - | Just Refl <- listrEqual sh sh' - , i == j - = Just Refl -listrEqual _ _ = Nothing - -listrShow :: forall n i. (i -> ShowS) -> ListR n i -> ShowS -listrShow f l = showString "[" . go "" l . showString "]" - where - go :: String -> ListR n' i -> ShowS - go _ ZR = id - go prefix (x ::: xs) = showString prefix . f x . go "," xs - -listrLength :: ListR n i -> Int -listrLength = length - -listrRank :: ListR n i -> SNat n -listrRank ZR = SNat -listrRank (_ ::: sh) = snatSucc (listrRank sh) - -listrAppend :: ListR n i -> ListR m i -> ListR (n + m) i -listrAppend ZR sh = sh -listrAppend (x ::: xs) sh = x ::: listrAppend xs sh - -listrFromList :: [i] -> (forall n. ListR n i -> r) -> r -listrFromList [] k = k ZR -listrFromList (x : xs) k = listrFromList xs $ \l -> k (x ::: l) - -listrHead :: ListR (n + 1) i -> i -listrHead (i ::: _) = i -listrHead ZR = error "unreachable" - -listrTail :: ListR (n + 1) i -> ListR n i -listrTail (_ ::: sh) = sh -listrTail ZR = error "unreachable" - -listrInit :: ListR (n + 1) i -> ListR n i -listrInit (n ::: sh@(_ ::: _)) = n ::: listrInit sh -listrInit (_ ::: ZR) = ZR -listrInit ZR = error "unreachable" - -listrLast :: ListR (n + 1) i -> i -listrLast (_ ::: sh@(_ ::: _)) = listrLast sh -listrLast (n ::: ZR) = n -listrLast ZR = error "unreachable" - -listrIndex :: forall k n i. (k + 1 <= n) => SNat k -> ListR n i -> i -listrIndex SZ (x ::: _) = x -listrIndex (SS i) (_ ::: xs) | Refl <- lemLeqSuccSucc (Proxy @k) (Proxy @n) = listrIndex i xs -listrIndex _ ZR = error "k + 1 <= 0" - -listrPermutePrefix :: forall i n. [Int] -> ListR n i -> ListR n i -listrPermutePrefix = \perm sh -> - listrFromList perm $ \sperm -> - case (listrRank sperm, listrRank sh) of - (permlen@SNat, shlen@SNat) -> case cmpNat permlen shlen of - LTI -> let (pre, post) = listrSplitAt permlen sh in listrAppend (applyPermRFull permlen sperm pre) post - EQI -> let (pre, post) = listrSplitAt permlen sh in listrAppend (applyPermRFull permlen sperm pre) post - GTI -> error $ "Length of permutation (" ++ show (fromSNat' permlen) ++ ")" - ++ " > length of shape (" ++ show (fromSNat' shlen) ++ ")" - where - listrSplitAt :: m <= n' => SNat m -> ListR n' i -> (ListR m i, ListR (n' - m) i) - listrSplitAt SZ sh = (ZR, sh) - listrSplitAt (SS m) (n ::: sh) = (\(pre, post) -> (n ::: pre, post)) (listrSplitAt m sh) - listrSplitAt SS{} ZR = error "m' + 1 <= 0" - - applyPermRFull :: SNat m -> ListR k Int -> ListR m i -> ListR k i - applyPermRFull _ ZR _ = ZR - applyPermRFull sm@SNat (i ::: perm) l = - TN.withSomeSNat (fromIntegral i) $ \si@(SNat :: SNat idx) -> - case cmpNat (SNat @(idx + 1)) sm of - LTI -> listrIndex si l ::: applyPermRFull sm perm l - EQI -> listrIndex si l ::: applyPermRFull sm perm l - GTI -> error "listrPermutePrefix: Index in permutation out of range" - - --- | An index into a rank-typed array. -type role IxR nominal representational -type IxR :: Nat -> Type -> Type -newtype IxR n i = IxR (ListR n i) - deriving (Eq, Ord, Generic) - deriving newtype (Functor, Foldable) - -pattern ZIR :: forall n i. () => n ~ 0 => IxR n i -pattern ZIR = IxR ZR - -pattern (:.:) - :: forall {n1} {i}. - forall n. (n + 1 ~ n1) - => i -> IxR n i -> IxR n1 i -pattern i :.: sh <- IxR (listrUncons -> Just (UnconsListRRes (IxR -> sh) i)) - where i :.: IxR sh = IxR (i ::: sh) -infixr 3 :.: - -{-# COMPLETE ZIR, (:.:) #-} - -type IIxR n = IxR n Int - -instance Show i => Show (IxR n i) where - showsPrec _ (IxR l) = listrShow shows l - -instance NFData i => NFData (IxR sh i) - -ixrLength :: IxR sh i -> Int -ixrLength (IxR l) = listrLength l - -ixrRank :: IxR n i -> SNat n -ixrRank (IxR sh) = listrRank sh - -ixrZero :: SNat n -> IIxR n -ixrZero SZ = ZIR -ixrZero (SS n) = 0 :.: ixrZero n - -ixCvtXR :: IIxX sh -> IIxR (Rank sh) -ixCvtXR ZIX = ZIR -ixCvtXR (n :.% idx) = n :.: ixCvtXR idx - -ixCvtRX :: IIxR n -> IIxX (Replicate n Nothing) -ixCvtRX ZIR = ZIX -ixCvtRX (n :.: (idx :: IxR m Int)) = - castWith (subst2 @IxX @Int (lemReplicateSucc @(Nothing @Nat) @m)) - (n :.% ixCvtRX idx) - -ixrHead :: IxR (n + 1) i -> i -ixrHead (IxR list) = listrHead list - -ixrTail :: IxR (n + 1) i -> IxR n i -ixrTail (IxR list) = IxR (listrTail list) - -ixrInit :: IxR (n + 1) i -> IxR n i -ixrInit (IxR list) = IxR (listrInit list) - -ixrLast :: IxR (n + 1) i -> i -ixrLast (IxR list) = listrLast list - -ixrAppend :: forall n m i. IxR n i -> IxR m i -> IxR (n + m) i -ixrAppend = coerce (listrAppend @_ @i) - -ixrPermutePrefix :: forall n i. [Int] -> IxR n i -> IxR n i -ixrPermutePrefix = coerce (listrPermutePrefix @i) - - -type role ShR nominal representational -type ShR :: Nat -> Type -> Type -newtype ShR n i = ShR (ListR n i) - deriving (Eq, Ord, Generic) - deriving newtype (Functor, Foldable) - -pattern ZSR :: forall n i. () => n ~ 0 => ShR n i -pattern ZSR = ShR ZR - -pattern (:$:) - :: forall {n1} {i}. - forall n. (n + 1 ~ n1) - => i -> ShR n i -> ShR n1 i -pattern i :$: sh <- ShR (listrUncons -> Just (UnconsListRRes (ShR -> sh) i)) - where i :$: ShR sh = ShR (i ::: sh) -infixr 3 :$: - -{-# COMPLETE ZSR, (:$:) #-} - -type IShR n = ShR n Int - -instance Show i => Show (ShR n i) where - showsPrec _ (ShR l) = listrShow shows l - -instance NFData i => NFData (ShR sh i) - -shCvtXR' :: forall n. IShX (Replicate n Nothing) -> IShR n -shCvtXR' ZSX = - castWith (subst2 (unsafeCoerceRefl :: 0 :~: n)) - ZSR -shCvtXR' (n :$% (idx :: IShX sh)) - | Refl <- lemReplicateSucc @(Nothing @Nat) @(n - 1) = - castWith (subst2 (lem1 @sh Refl)) - (fromSMayNat' n :$: shCvtXR' (castWith (subst2 (lem2 Refl)) idx)) - where - lem1 :: forall sh' n' k. - k : sh' :~: Replicate n' Nothing - -> Rank sh' + 1 :~: n' - lem1 Refl = unsafeCoerceRefl - - lem2 :: k : sh :~: Replicate n Nothing - -> sh :~: Replicate (Rank sh) Nothing - lem2 Refl = unsafeCoerceRefl - -shCvtRX :: IShR n -> IShX (Replicate n Nothing) -shCvtRX ZSR = ZSX -shCvtRX (n :$: (idx :: ShR m Int)) = - castWith (subst2 @ShX @Int (lemReplicateSucc @(Nothing @Nat) @m)) - (SUnknown n :$% shCvtRX idx) - --- | This checks only whether the ranks are equal, not whether the actual --- values are. -shrEqRank :: ShR n i -> ShR n' i -> Maybe (n :~: n') -shrEqRank (ShR sh) (ShR sh') = listrEqRank sh sh' - --- | This compares the shapes for value equality. -shrEqual :: Eq i => ShR n i -> ShR n' i -> Maybe (n :~: n') -shrEqual (ShR sh) (ShR sh') = listrEqual sh sh' - -shrLength :: ShR sh i -> Int -shrLength (ShR l) = listrLength l - --- | This function can also be used to conjure up a 'KnownNat' dictionary; --- pattern matching on the returned 'SNat' with the 'pattern SNat' pattern --- synonym yields 'KnownNat' evidence. -shrRank :: ShR n i -> SNat n -shrRank (ShR sh) = listrRank sh - --- | The number of elements in an array described by this shape. -shrSize :: IShR n -> Int -shrSize ZSR = 1 -shrSize (n :$: sh) = n * shrSize sh - -shrHead :: ShR (n + 1) i -> i -shrHead (ShR list) = listrHead list - -shrTail :: ShR (n + 1) i -> ShR n i -shrTail (ShR list) = ShR (listrTail list) - -shrInit :: ShR (n + 1) i -> ShR n i -shrInit (ShR list) = ShR (listrInit list) - -shrLast :: ShR (n + 1) i -> i -shrLast (ShR list) = listrLast list - -shrAppend :: forall n m i. ShR n i -> ShR m i -> ShR (n + m) i -shrAppend = coerce (listrAppend @_ @i) - -shrPermutePrefix :: forall n i. [Int] -> ShR n i -> ShR n i -shrPermutePrefix = coerce (listrPermutePrefix @i) - - --- | Untyped: length is checked at runtime. -instance KnownNat n => IsList (ListR n i) where - type Item (ListR n i) = i - fromList topl = go (SNat @n) topl - where - go :: SNat n' -> [i] -> ListR n' i - go SZ [] = ZR - go (SS n) (i : is) = i ::: go n is - go _ _ = error $ "IsList(ListR): Mismatched list length (type says " - ++ show (fromSNat (SNat @n)) ++ ", list has length " - ++ show (length topl) ++ ")" - toList = Foldable.toList - --- | Untyped: length is checked at runtime. -instance KnownNat n => IsList (IxR n i) where - type Item (IxR n i) = i - fromList = IxR . IsList.fromList - toList = Foldable.toList - --- | Untyped: length is checked at runtime. -instance KnownNat n => IsList (ShR n i) where - type Item (ShR n i) = i - fromList = ShR . IsList.fromList - toList = Foldable.toList - - -type role ListS nominal representational -type ListS :: [Nat] -> (Nat -> Type) -> Type -data ListS sh f where - ZS :: ListS '[] f - -- TODO: when the KnownNat constraint is removed, restore listsIndex to sanity - (::$) :: forall n sh {f}. KnownNat n => f n -> ListS sh f -> ListS (n : sh) f -deriving instance (forall n. Eq (f n)) => Eq (ListS sh f) -deriving instance (forall n. Ord (f n)) => Ord (ListS sh f) -infixr 3 ::$ - -instance (forall n. Show (f n)) => Show (ListS sh f) where - showsPrec _ = listsShow shows - -instance (forall m. NFData (f m)) => NFData (ListS n f) where - rnf ZS = () - rnf (x ::$ l) = rnf x `seq` rnf l - -data UnconsListSRes f sh1 = - forall n sh. (KnownNat n, n : sh ~ sh1) => UnconsListSRes (ListS sh f) (f n) -listsUncons :: ListS sh1 f -> Maybe (UnconsListSRes f sh1) -listsUncons (x ::$ sh') = Just (UnconsListSRes sh' x) -listsUncons ZS = Nothing - --- | This checks only whether the types are equal; if the elements of the list --- are not singletons, their values may still differ. This corresponds to --- 'testEquality', except on the penultimate type parameter. -listsEqType :: TestEquality f => ListS sh f -> ListS sh' f -> Maybe (sh :~: sh') -listsEqType ZS ZS = Just Refl -listsEqType (n ::$ sh) (m ::$ sh') - | Just Refl <- testEquality n m - , Just Refl <- listsEqType sh sh' - = Just Refl -listsEqType _ _ = Nothing - --- | This checks whether the two lists actually contain equal values. This is --- more than 'testEquality', and corresponds to @geq@ from @Data.GADT.Compare@ --- in the @some@ package (except on the penultimate type parameter). -listsEqual :: (TestEquality f, forall n. Eq (f n)) => ListS sh f -> ListS sh' f -> Maybe (sh :~: sh') -listsEqual ZS ZS = Just Refl -listsEqual (n ::$ sh) (m ::$ sh') - | Just Refl <- testEquality n m - , n == m - , Just Refl <- listsEqual sh sh' - = Just Refl -listsEqual _ _ = Nothing - -listsFmap :: (forall n. f n -> g n) -> ListS sh f -> ListS sh g -listsFmap _ ZS = ZS -listsFmap f (x ::$ xs) = f x ::$ listsFmap f xs - -listsFold :: Monoid m => (forall n. f n -> m) -> ListS sh f -> m -listsFold _ ZS = mempty -listsFold f (x ::$ xs) = f x <> listsFold f xs - -listsShow :: forall sh f. (forall n. f n -> ShowS) -> ListS sh f -> ShowS -listsShow f l = showString "[" . go "" l . showString "]" - where - go :: String -> ListS sh' f -> ShowS - go _ ZS = id - go prefix (x ::$ xs) = showString prefix . f x . go "," xs - -listsLength :: ListS sh f -> Int -listsLength = getSum . listsFold (\_ -> Sum 1) - -listsRank :: ListS sh f -> SNat (Rank sh) -listsRank ZS = SNat -listsRank (_ ::$ sh) = snatSucc (listsRank sh) - -listsToList :: ListS sh (Const i) -> [i] -listsToList ZS = [] -listsToList (Const i ::$ is) = i : listsToList is - -listsHead :: ListS (n : sh) f -> f n -listsHead (i ::$ _) = i - -listsTail :: ListS (n : sh) f -> ListS sh f -listsTail (_ ::$ sh) = sh - -listsInit :: ListS (n : sh) f -> ListS (Init (n : sh)) f -listsInit (n ::$ sh@(_ ::$ _)) = n ::$ listsInit sh -listsInit (_ ::$ ZS) = ZS - -listsLast :: ListS (n : sh) f -> f (Last (n : sh)) -listsLast (_ ::$ sh@(_ ::$ _)) = listsLast sh -listsLast (n ::$ ZS) = n - -listsAppend :: ListS sh f -> ListS sh' f -> ListS (sh ++ sh') f -listsAppend ZS idx' = idx' -listsAppend (i ::$ idx) idx' = i ::$ listsAppend idx idx' - -listsTakeLenPerm :: forall f is sh. Perm is -> ListS sh f -> ListS (TakeLen is sh) f -listsTakeLenPerm PNil _ = ZS -listsTakeLenPerm (_ `PCons` is) (n ::$ sh) = n ::$ listsTakeLenPerm is sh -listsTakeLenPerm (_ `PCons` _) ZS = error "Permutation longer than shape" - -listsDropLenPerm :: forall f is sh. Perm is -> ListS sh f -> ListS (DropLen is sh) f -listsDropLenPerm PNil sh = sh -listsDropLenPerm (_ `PCons` is) (_ ::$ sh) = listsDropLenPerm is sh -listsDropLenPerm (_ `PCons` _) ZS = error "Permutation longer than shape" - -listsPermute :: forall f is sh. Perm is -> ListS sh f -> ListS (Permute is sh) f -listsPermute PNil _ = ZS -listsPermute (i `PCons` (is :: Perm is')) (sh :: ListS sh f) = - case listsIndex (Proxy @is') (Proxy @sh) i sh of - (item, SNat) -> item ::$ listsPermute is sh - --- TODO: remove this SNat when the KnownNat constaint in ListS is removed -listsIndex :: forall f i is sh shT. Proxy is -> Proxy shT -> SNat i -> ListS sh f -> (f (Index i sh), SNat (Index i sh)) -listsIndex _ _ SZ (n ::$ _) = (n, SNat) -listsIndex p pT (SS (i :: SNat i')) ((_ :: f n) ::$ (sh :: ListS sh' f)) - | Refl <- lemIndexSucc (Proxy @i') (Proxy @n) (Proxy @sh') - = listsIndex p pT i sh -listsIndex _ _ _ ZS = error "Index into empty shape" - -listsPermutePrefix :: forall f is sh. Perm is -> ListS sh f -> ListS (PermutePrefix is sh) f -listsPermutePrefix perm sh = listsAppend (listsPermute perm (listsTakeLenPerm perm sh)) (listsDropLenPerm perm sh) - - --- | An index into a shape-typed array. --- --- For convenience, this contains regular 'Int's instead of bounded integers --- (traditionally called \"@Fin@\"). -type role IxS nominal representational -type IxS :: [Nat] -> Type -> Type -newtype IxS sh i = IxS (ListS sh (Const i)) - deriving (Eq, Ord, Generic) - -pattern ZIS :: forall sh i. () => sh ~ '[] => IxS sh i -pattern ZIS = IxS ZS - -pattern (:.$) - :: forall {sh1} {i}. - forall n sh. (KnownNat n, n : sh ~ sh1) - => i -> IxS sh i -> IxS sh1 i -pattern i :.$ shl <- IxS (listsUncons -> Just (UnconsListSRes (IxS -> shl) (getConst -> i))) - where i :.$ IxS shl = IxS (Const i ::$ shl) -infixr 3 :.$ - -{-# COMPLETE ZIS, (:.$) #-} - -type IIxS sh = IxS sh Int - -instance Show i => Show (IxS sh i) where - showsPrec _ (IxS l) = listsShow (\(Const i) -> shows i) l - -instance Functor (IxS sh) where - fmap f (IxS l) = IxS (listsFmap (Const . f . getConst) l) - -instance Foldable (IxS sh) where - foldMap f (IxS l) = listsFold (f . getConst) l - -instance NFData i => NFData (IxS sh i) - -ixsLength :: IxS sh i -> Int -ixsLength (IxS l) = listsLength l - -ixsRank :: IxS sh i -> SNat (Rank sh) -ixsRank (IxS l) = listsRank l - -ixsZero :: ShS sh -> IIxS sh -ixsZero ZSS = ZIS -ixsZero (_ :$$ sh) = 0 :.$ ixsZero sh - -ixCvtXS :: ShS sh -> IIxX (MapJust sh) -> IIxS sh -ixCvtXS ZSS ZIX = ZIS -ixCvtXS (_ :$$ sh) (n :.% idx) = n :.$ ixCvtXS sh idx - -ixCvtSX :: IIxS sh -> IIxX (MapJust sh) -ixCvtSX ZIS = ZIX -ixCvtSX (n :.$ sh) = n :.% ixCvtSX sh - -ixsHead :: IxS (n : sh) i -> i -ixsHead (IxS list) = getConst (listsHead list) - -ixsTail :: IxS (n : sh) i -> IxS sh i -ixsTail (IxS list) = IxS (listsTail list) - -ixsInit :: IxS (n : sh) i -> IxS (Init (n : sh)) i -ixsInit (IxS list) = IxS (listsInit list) - -ixsLast :: IxS (n : sh) i -> i -ixsLast (IxS list) = getConst (listsLast list) - -ixsAppend :: forall sh sh' i. IxS sh i -> IxS sh' i -> IxS (sh ++ sh') i -ixsAppend = coerce (listsAppend @_ @(Const i)) - -ixsPermutePrefix :: forall i is sh. Perm is -> IxS sh i -> IxS (PermutePrefix is sh) i -ixsPermutePrefix = coerce (listsPermutePrefix @(Const i)) - - --- | The shape of a shape-typed array given as a list of 'SNat' values. --- --- Note that because the shape of a shape-typed array is known statically, you --- can also retrieve the array shape from a 'KnownShS' dictionary. -type role ShS nominal -type ShS :: [Nat] -> Type -newtype ShS sh = ShS (ListS sh SNat) - deriving (Eq, Ord, Generic) - -pattern ZSS :: forall sh. () => sh ~ '[] => ShS sh -pattern ZSS = ShS ZS - -pattern (:$$) - :: forall {sh1}. - forall n sh. (KnownNat n, n : sh ~ sh1) - => SNat n -> ShS sh -> ShS sh1 -pattern i :$$ shl <- ShS (listsUncons -> Just (UnconsListSRes (ShS -> shl) i)) - where i :$$ ShS shl = ShS (i ::$ shl) - -infixr 3 :$$ - -{-# COMPLETE ZSS, (:$$) #-} - -instance Show (ShS sh) where - showsPrec _ (ShS l) = listsShow (shows . fromSNat) l - -instance NFData (ShS sh) where - rnf (ShS ZS) = () - rnf (ShS (SNat ::$ l)) = rnf (ShS l) - -instance TestEquality ShS where - testEquality (ShS l1) (ShS l2) = listsEqType l1 l2 - --- | @'shsEqual' = 'testEquality'@. (Because 'ShS' is a singleton, types are --- equal if and only if values are equal.) -shsEqual :: ShS sh -> ShS sh' -> Maybe (sh :~: sh') -shsEqual = testEquality - -shsLength :: ShS sh -> Int -shsLength (ShS l) = listsLength l - -shsRank :: ShS sh -> SNat (Rank sh) -shsRank (ShS l) = listsRank l - -shsSize :: ShS sh -> Int -shsSize ZSS = 1 -shsSize (n :$$ sh) = fromSNat' n * shsSize sh - -shsToList :: ShS sh -> [Int] -shsToList ZSS = [] -shsToList (sn :$$ sh) = fromSNat' sn : shsToList sh - -shCvtXS' :: forall sh. IShX (MapJust sh) -> ShS sh -shCvtXS' ZSX = castWith (subst1 (unsafeCoerceRefl :: '[] :~: sh)) ZSS -shCvtXS' (SKnown n@SNat :$% (idx :: IShX mjshT)) = - castWith (subst1 (lem Refl)) $ - n :$$ shCvtXS' @(Tail sh) (castWith (subst2 (unsafeCoerceRefl :: mjshT :~: MapJust (Tail sh))) - idx) - where - lem :: forall sh1 sh' n. - Just n : sh1 :~: MapJust sh' - -> n : Tail sh' :~: sh' - lem Refl = unsafeCoerceRefl -shCvtXS' (SUnknown _ :$% _) = error "impossible" - -shCvtSX :: ShS sh -> IShX (MapJust sh) -shCvtSX ZSS = ZSX -shCvtSX (n :$$ sh) = SKnown n :$% shCvtSX sh - -shsHead :: ShS (n : sh) -> SNat n -shsHead (ShS list) = listsHead list - -shsTail :: ShS (n : sh) -> ShS sh -shsTail (ShS list) = ShS (listsTail list) - -shsInit :: ShS (n : sh) -> ShS (Init (n : sh)) -shsInit (ShS list) = ShS (listsInit list) - -shsLast :: ShS (n : sh) -> SNat (Last (n : sh)) -shsLast (ShS list) = listsLast list - -shsAppend :: forall sh sh'. ShS sh -> ShS sh' -> ShS (sh ++ sh') -shsAppend = coerce (listsAppend @_ @SNat) - -shsTakeLen :: Perm is -> ShS sh -> ShS (TakeLen is sh) -shsTakeLen = coerce (listsTakeLenPerm @SNat) - -shsPermute :: Perm is -> ShS sh -> ShS (Permute is sh) -shsPermute = coerce (listsPermute @SNat) - -shsIndex :: Proxy is -> Proxy shT -> SNat i -> ShS sh -> SNat (Index i sh) -shsIndex pis pshT i sh = coerce (fst (listsIndex @SNat pis pshT i (coerce sh))) - -shsPermutePrefix :: forall is sh. Perm is -> ShS sh -> ShS (PermutePrefix is sh) -shsPermutePrefix = coerce (listsPermutePrefix @SNat) - -type family Product sh where - Product '[] = 1 - Product (n : ns) = n * Product ns - -shsProduct :: ShS sh -> SNat (Product sh) -shsProduct ZSS = SNat -shsProduct (n :$$ sh) = n `snatMul` shsProduct sh - --- | Evidence for the static part of a shape. This pops up only when you are --- polymorphic in the element type of an array. -type KnownShS :: [Nat] -> Constraint -class KnownShS sh where knownShS :: ShS sh -instance KnownShS '[] where knownShS = ZSS -instance (KnownNat n, KnownShS sh) => KnownShS (n : sh) where knownShS = natSing :$$ knownShS - -withKnownShS :: forall sh r. ShS sh -> (KnownShS sh => r) -> r -withKnownShS sh = withDict @(KnownShS sh) sh - -shsKnownShS :: ShS sh -> Dict KnownShS sh -shsKnownShS ZSS = Dict -shsKnownShS (SNat :$$ sh) | Dict <- shsKnownShS sh = Dict - -shsOrthotopeShape :: ShS sh -> Dict O.Shape sh -shsOrthotopeShape ZSS = Dict -shsOrthotopeShape (SNat :$$ sh) | Dict <- shsOrthotopeShape sh = Dict - - --- | Untyped: length is checked at runtime. -instance KnownShS sh => IsList (ListS sh (Const i)) where - type Item (ListS sh (Const i)) = i - fromList topl = go (knownShS @sh) topl - where - go :: ShS sh' -> [i] -> ListS sh' (Const i) - go ZSS [] = ZS - go (_ :$$ sh) (i : is) = Const i ::$ go sh is - go _ _ = error $ "IsList(ListS): Mismatched list length (type says " - ++ show (shsLength (knownShS @sh)) ++ ", list has length " - ++ show (length topl) ++ ")" - toList = listsToList - --- | Very untyped: only length is checked (at runtime), index bounds are __not checked__. -instance KnownShS sh => IsList (IxS sh i) where - type Item (IxS sh i) = i - fromList = IxS . IsList.fromList - toList = Foldable.toList - --- | Untyped: length and values are checked at runtime. -instance KnownShS sh => IsList (ShS sh) where - type Item (ShS sh) = Int - fromList topl = ShS (go (knownShS @sh) topl) - where - go :: ShS sh' -> [Int] -> ListS sh' SNat - go ZSS [] = ZS - go (sn :$$ sh) (i : is) - | i == fromSNat' sn = sn ::$ go sh is - | otherwise = error $ "IsList(ShS): Value does not match typing (type says " - ++ show (fromSNat' sn) ++ ", list contains " ++ show i ++ ")" - go _ _ = error $ "IsList(ShS): Mismatched list length (type says " - ++ show (shsLength (knownShS @sh)) ++ ", list has length " - ++ show (length topl) ++ ")" - toList = shsToList diff --git a/src/Data/Array/Nested/Internal/Shaped.hs b/src/Data/Array/Nested/Internal/Shaped.hs deleted file mode 100644 index a8f330f..0000000 --- a/src/Data/Array/Nested/Internal/Shaped.hs +++ /dev/null @@ -1,496 +0,0 @@ -{-# LANGUAGE DataKinds #-} -{-# LANGUAGE DeriveGeneric #-} -{-# LANGUAGE DerivingVia #-} -{-# LANGUAGE FlexibleContexts #-} -{-# LANGUAGE FlexibleInstances #-} -{-# LANGUAGE GeneralizedNewtypeDeriving #-} -{-# LANGUAGE ImportQualifiedPost #-} -{-# LANGUAGE InstanceSigs #-} -{-# LANGUAGE RankNTypes #-} -{-# LANGUAGE ScopedTypeVariables #-} -{-# LANGUAGE StandaloneDeriving #-} -{-# LANGUAGE StandaloneKindSignatures #-} -{-# LANGUAGE TypeApplications #-} -{-# LANGUAGE TypeFamilies #-} -{-# LANGUAGE TypeOperators #-} -{-# LANGUAGE UndecidableInstances #-} -{-# LANGUAGE ViewPatterns #-} -{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-} -{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-} -module Data.Array.Nested.Internal.Shaped where - -import Prelude hiding (mappend, mconcat) - -import Control.DeepSeq (NFData(..)) -import Control.Monad.ST -import Data.Array.Internal.ShapedS qualified as SS -import Data.Array.Internal.ShapedG qualified as SG -import Data.Array.Internal.RankedS qualified as RS -import Data.Array.Internal.RankedG qualified as RG -import Data.Bifunctor (first) -import Data.Coerce (coerce) -import Data.Kind (Type) -import Data.List.NonEmpty (NonEmpty) -import Data.Proxy -import Data.Type.Equality -import Data.Vector.Storable qualified as VS -import Foreign.Storable (Storable) -import GHC.Float qualified (log1p, expm1, log1pexp, log1mexp) -import GHC.Generics (Generic) -import GHC.TypeLits - -import Data.Array.Mixed.XArray (XArray) -import Data.Array.Mixed.XArray qualified as X -import Data.Array.Mixed.Lemmas -import Data.Array.Mixed.Permutation -import Data.Array.Mixed.Shape -import Data.Array.Mixed.Types -import Data.Array.Nested.Internal.Lemmas -import Data.Array.Nested.Internal.Mixed -import Data.Array.Nested.Internal.Shape -import Data.Array.Strided.Arith - - --- | A shape-typed array: the full shape of the array (the sizes of its --- dimensions) is represented on the type level as a list of 'Nat's. Note that --- these are "GHC.TypeLits" naturals, because we do not need induction over --- them and we want very large arrays to be possible. --- --- Like for 'Ranked', the valid elements are described by the 'Elt' type class, --- and 'Shaped' itself is again an instance of 'Elt' as well. --- --- 'Shaped' is a newtype around a 'Mixed' of 'Just's. -type Shaped :: [Nat] -> Type -> Type -newtype Shaped sh a = Shaped (Mixed (MapJust sh) a) -deriving instance Eq (Mixed (MapJust sh) a) => Eq (Shaped sh a) -deriving instance Ord (Mixed (MapJust sh) a) => Ord (Shaped sh a) - -instance (Show a, Elt a) => Show (Shaped n a) where - showsPrec d arr@(Shaped marr) = - let sh = show (shsToList (sshape arr)) - in showsMixedArray ("sfromListLinear " ++ sh) ("sreplicate " ++ sh) d marr - -instance Elt a => NFData (Shaped sh a) where - rnf (Shaped arr) = rnf arr - --- just unwrap the newtype and defer to the general instance for nested arrays -newtype instance Mixed sh (Shaped sh' a) = M_Shaped (Mixed sh (Mixed (MapJust sh') a)) - deriving (Generic) - -deriving instance Eq (Mixed sh (Mixed (MapJust sh') a)) => Eq (Mixed sh (Shaped sh' a)) - -newtype instance MixedVecs s sh (Shaped sh' a) = MV_Shaped (MixedVecs s sh (Mixed (MapJust sh') a)) - -instance Elt a => Elt (Shaped sh a) where - mshape (M_Shaped arr) = mshape arr - mindex (M_Shaped arr) i = Shaped (mindex arr i) - - mindexPartial :: forall sh1 sh2. Mixed (sh1 ++ sh2) (Shaped sh a) -> IIxX sh1 -> Mixed sh2 (Shaped sh a) - mindexPartial (M_Shaped arr) i = - coerce @(Mixed sh2 (Mixed (MapJust sh) a)) @(Mixed sh2 (Shaped sh a)) $ - mindexPartial arr i - - mscalar (Shaped x) = M_Shaped (M_Nest ZSX x) - - mfromListOuter :: forall sh'. NonEmpty (Mixed sh' (Shaped sh a)) -> Mixed (Nothing : sh') (Shaped sh a) - mfromListOuter l = M_Shaped (mfromListOuter (coerce l)) - - mtoListOuter :: forall n sh'. Mixed (n : sh') (Shaped sh a) -> [Mixed sh' (Shaped sh a)] - mtoListOuter (M_Shaped arr) - = coerce @[Mixed sh' (Mixed (MapJust sh) a)] @[Mixed sh' (Shaped sh a)] (mtoListOuter arr) - - mlift :: forall sh1 sh2. - StaticShX sh2 - -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b) - -> Mixed sh1 (Shaped sh a) -> Mixed sh2 (Shaped sh a) - mlift ssh2 f (M_Shaped arr) = - coerce @(Mixed sh2 (Mixed (MapJust sh) a)) @(Mixed sh2 (Shaped sh a)) $ - mlift ssh2 f arr - - mlift2 :: forall sh1 sh2 sh3. - StaticShX sh3 - -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b) - -> Mixed sh1 (Shaped sh a) -> Mixed sh2 (Shaped sh a) -> Mixed sh3 (Shaped sh a) - mlift2 ssh3 f (M_Shaped arr1) (M_Shaped arr2) = - coerce @(Mixed sh3 (Mixed (MapJust sh) a)) @(Mixed sh3 (Shaped sh a)) $ - mlift2 ssh3 f arr1 arr2 - - mliftL :: forall sh1 sh2. - StaticShX sh2 - -> (forall sh' b. Storable b => StaticShX sh' -> NonEmpty (XArray (sh1 ++ sh') b) -> NonEmpty (XArray (sh2 ++ sh') b)) - -> NonEmpty (Mixed sh1 (Shaped sh a)) -> NonEmpty (Mixed sh2 (Shaped sh a)) - mliftL ssh2 f l = - coerce @(NonEmpty (Mixed sh2 (Mixed (MapJust sh) a))) - @(NonEmpty (Mixed sh2 (Shaped sh a))) $ - mliftL ssh2 f (coerce l) - - mcastPartial ssh1 ssh2 psh' (M_Shaped arr) = M_Shaped (mcastPartial ssh1 ssh2 psh' arr) - - mtranspose perm (M_Shaped arr) = M_Shaped (mtranspose perm arr) - - mconcat l = M_Shaped (mconcat (coerce l)) - - mrnf (M_Shaped arr) = mrnf arr - - type ShapeTree (Shaped sh a) = (ShS sh, ShapeTree a) - - mshapeTree (Shaped arr) = first shCvtXS' (mshapeTree arr) - - mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2 - - mshapeTreeEmpty _ (sh, t) = shsSize sh == 0 && mshapeTreeEmpty (Proxy @a) t - - mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")" - - marrayStrides (M_Shaped arr) = marrayStrides arr - - mvecsWrite :: forall sh' s. IShX sh' -> IIxX sh' -> Shaped sh a -> MixedVecs s sh' (Shaped sh a) -> ST s () - mvecsWrite sh idx (Shaped arr) vecs = - mvecsWrite sh idx arr - (coerce @(MixedVecs s sh' (Shaped sh a)) @(MixedVecs s sh' (Mixed (MapJust sh) a)) - vecs) - - mvecsWritePartial :: forall sh1 sh2 s. - IShX (sh1 ++ sh2) -> IIxX sh1 -> Mixed sh2 (Shaped sh a) - -> MixedVecs s (sh1 ++ sh2) (Shaped sh a) - -> ST s () - mvecsWritePartial sh idx arr vecs = - mvecsWritePartial sh idx - (coerce @(Mixed sh2 (Shaped sh a)) - @(Mixed sh2 (Mixed (MapJust sh) a)) - arr) - (coerce @(MixedVecs s (sh1 ++ sh2) (Shaped sh a)) - @(MixedVecs s (sh1 ++ sh2) (Mixed (MapJust sh) a)) - vecs) - - mvecsFreeze :: forall sh' s. IShX sh' -> MixedVecs s sh' (Shaped sh a) -> ST s (Mixed sh' (Shaped sh a)) - mvecsFreeze sh vecs = - coerce @(Mixed sh' (Mixed (MapJust sh) a)) - @(Mixed sh' (Shaped sh a)) - <$> mvecsFreeze sh - (coerce @(MixedVecs s sh' (Shaped sh a)) - @(MixedVecs s sh' (Mixed (MapJust sh) a)) - vecs) - -instance (KnownShS sh, KnownElt a) => KnownElt (Shaped sh a) where - memptyArrayUnsafe :: forall sh'. IShX sh' -> Mixed sh' (Shaped sh a) - memptyArrayUnsafe i - | Dict <- lemKnownMapJust (Proxy @sh) - = coerce @(Mixed sh' (Mixed (MapJust sh) a)) @(Mixed sh' (Shaped sh a)) $ - memptyArrayUnsafe i - - mvecsUnsafeNew idx (Shaped arr) - | Dict <- lemKnownMapJust (Proxy @sh) - = MV_Shaped <$> mvecsUnsafeNew idx arr - - mvecsNewEmpty _ - | Dict <- lemKnownMapJust (Proxy @sh) - = MV_Shaped <$> mvecsNewEmpty (Proxy @(Mixed (MapJust sh) a)) - - -liftShaped1 :: forall sh a b. - (Mixed (MapJust sh) a -> Mixed (MapJust sh) b) - -> Shaped sh a -> Shaped sh b -liftShaped1 = coerce - -liftShaped2 :: forall sh a b c. - (Mixed (MapJust sh) a -> Mixed (MapJust sh) b -> Mixed (MapJust sh) c) - -> Shaped sh a -> Shaped sh b -> Shaped sh c -liftShaped2 = coerce - -instance (NumElt a, PrimElt a) => Num (Shaped sh a) where - (+) = liftShaped2 (+) - (-) = liftShaped2 (-) - (*) = liftShaped2 (*) - negate = liftShaped1 negate - abs = liftShaped1 abs - signum = liftShaped1 signum - fromInteger = error "Data.Array.Nested.fromInteger: No singletons available, use explicit sreplicateScal" - -instance (FloatElt a, PrimElt a) => Fractional (Shaped sh a) where - fromRational = error "Data.Array.Nested.fromRational: No singletons available, use explicit sreplicateScal" - recip = liftShaped1 recip - (/) = liftShaped2 (/) - -instance (FloatElt a, PrimElt a) => Floating (Shaped sh a) where - pi = error "Data.Array.Nested.pi: No singletons available, use explicit sreplicateScal" - exp = liftShaped1 exp - log = liftShaped1 log - sqrt = liftShaped1 sqrt - (**) = liftShaped2 (**) - logBase = liftShaped2 logBase - sin = liftShaped1 sin - cos = liftShaped1 cos - tan = liftShaped1 tan - asin = liftShaped1 asin - acos = liftShaped1 acos - atan = liftShaped1 atan - sinh = liftShaped1 sinh - cosh = liftShaped1 cosh - tanh = liftShaped1 tanh - asinh = liftShaped1 asinh - acosh = liftShaped1 acosh - atanh = liftShaped1 atanh - log1p = liftShaped1 GHC.Float.log1p - expm1 = liftShaped1 GHC.Float.expm1 - log1pexp = liftShaped1 GHC.Float.log1pexp - log1mexp = liftShaped1 GHC.Float.log1mexp - -squotArray, sremArray :: (IntElt a, PrimElt a) => Shaped sh a -> Shaped sh a -> Shaped sh a -squotArray = liftShaped2 mquotArray -sremArray = liftShaped2 mremArray - -satan2Array :: (FloatElt a, PrimElt a) => Shaped sh a -> Shaped sh a -> Shaped sh a -satan2Array = liftShaped2 matan2Array - - -semptyArray :: KnownElt a => ShS sh -> Shaped (0 : sh) a -semptyArray sh = Shaped (memptyArray (shCvtSX sh)) - -sshape :: forall sh a. Elt a => Shaped sh a -> ShS sh -sshape (Shaped arr) = shCvtXS' (mshape arr) - -srank :: Elt a => Shaped sh a -> SNat (Rank sh) -srank = shsRank . sshape - --- | The total number of elements in the array. -ssize :: Elt a => Shaped sh a -> Int -ssize = shsSize . sshape - -sindex :: Elt a => Shaped sh a -> IIxS sh -> a -sindex (Shaped arr) idx = mindex arr (ixCvtSX idx) - -shsTakeIx :: Proxy sh' -> ShS (sh ++ sh') -> IIxS sh -> ShS sh -shsTakeIx _ _ ZIS = ZSS -shsTakeIx p sh (_ :.$ idx) = case sh of n :$$ sh' -> n :$$ shsTakeIx p sh' idx - -sindexPartial :: forall sh1 sh2 a. Elt a => Shaped (sh1 ++ sh2) a -> IIxS sh1 -> Shaped sh2 a -sindexPartial sarr@(Shaped arr) idx = - Shaped (mindexPartial @a @(MapJust sh1) @(MapJust sh2) - (castWith (subst2 (lemMapJustApp (shsTakeIx (Proxy @sh2) (sshape sarr) idx) (Proxy @sh2))) arr) - (ixCvtSX idx)) - --- | __WARNING__: All values returned from the function must have equal shape. --- See the documentation of 'mgenerate' for more details. -sgenerate :: forall sh a. KnownElt a => ShS sh -> (IIxS sh -> a) -> Shaped sh a -sgenerate sh f = Shaped (mgenerate (shCvtSX sh) (f . ixCvtXS sh)) - --- | See the documentation of 'mlift'. -slift :: forall sh1 sh2 a. Elt a - => ShS sh2 - -> (forall sh' b. Storable b => StaticShX sh' -> XArray (MapJust sh1 ++ sh') b -> XArray (MapJust sh2 ++ sh') b) - -> Shaped sh1 a -> Shaped sh2 a -slift sh2 f (Shaped arr) = Shaped (mlift (ssxFromShape (shCvtSX sh2)) f arr) - --- | See the documentation of 'mlift'. -slift2 :: forall sh1 sh2 sh3 a. Elt a - => ShS sh3 - -> (forall sh' b. Storable b => StaticShX sh' -> XArray (MapJust sh1 ++ sh') b -> XArray (MapJust sh2 ++ sh') b -> XArray (MapJust sh3 ++ sh') b) - -> Shaped sh1 a -> Shaped sh2 a -> Shaped sh3 a -slift2 sh3 f (Shaped arr1) (Shaped arr2) = Shaped (mlift2 (ssxFromShape (shCvtSX sh3)) f arr1 arr2) - -ssumOuter1P :: forall sh n a. (Storable a, NumElt a) - => Shaped (n : sh) (Primitive a) -> Shaped sh (Primitive a) -ssumOuter1P (Shaped arr) = Shaped (msumOuter1P arr) - -ssumOuter1 :: forall sh n a. (NumElt a, PrimElt a) - => Shaped (n : sh) a -> Shaped sh a -ssumOuter1 = sfromPrimitive . ssumOuter1P . stoPrimitive - -ssumAllPrim :: (PrimElt a, NumElt a) => Shaped n a -> a -ssumAllPrim (Shaped arr) = msumAllPrim arr - -stranspose :: forall is sh a. (IsPermutation is, Rank is <= Rank sh, Elt a) - => Perm is -> Shaped sh a -> Shaped (PermutePrefix is sh) a -stranspose perm sarr@(Shaped arr) - | Refl <- lemRankMapJust (sshape sarr) - , Refl <- lemTakeLenMapJust perm (sshape sarr) - , Refl <- lemDropLenMapJust perm (sshape sarr) - , Refl <- lemPermuteMapJust perm (shsTakeLen perm (sshape sarr)) - , Refl <- lemMapJustApp (shsPermute perm (shsTakeLen perm (sshape sarr))) (Proxy @(DropLen is sh)) - = Shaped (mtranspose perm arr) - -sappend :: Elt a => Shaped (n : sh) a -> Shaped (m : sh) a -> Shaped (n + m : sh) a -sappend = coerce mappend - -sscalar :: Elt a => a -> Shaped '[] a -sscalar x = Shaped (mscalar x) - -sfromVectorP :: Storable a => ShS sh -> VS.Vector a -> Shaped sh (Primitive a) -sfromVectorP sh v = Shaped (mfromVectorP (shCvtSX sh) v) - -sfromVector :: PrimElt a => ShS sh -> VS.Vector a -> Shaped sh a -sfromVector sh v = sfromPrimitive (sfromVectorP sh v) - -stoVectorP :: Storable a => Shaped sh (Primitive a) -> VS.Vector a -stoVectorP = coerce mtoVectorP - -stoVector :: PrimElt a => Shaped sh a -> VS.Vector a -stoVector = coerce mtoVector - -sfromListOuter :: Elt a => SNat n -> NonEmpty (Shaped sh a) -> Shaped (n : sh) a -sfromListOuter sn l = Shaped (mcastPartial (SUnknown () :!% ZKX) (SKnown sn :!% ZKX) Proxy $ mfromListOuter (coerce l)) - -sfromList1 :: Elt a => SNat n -> NonEmpty a -> Shaped '[n] a -sfromList1 sn = Shaped . mcast (SKnown sn :!% ZKX) . mfromList1 - -sfromList1Prim :: (PrimElt a, Elt a) => SNat n -> [a] -> Shaped '[n] a -sfromList1Prim sn = Shaped . mcast (SKnown sn :!% ZKX) . mfromList1Prim - -stoListOuter :: Elt a => Shaped (n : sh) a -> [Shaped sh a] -stoListOuter (Shaped arr) = coerce (mtoListOuter arr) - -stoList1 :: Elt a => Shaped '[n] a -> [a] -stoList1 = map sunScalar . stoListOuter - -sfromListPrim :: forall n a. PrimElt a => SNat n -> [a] -> Shaped '[n] a -sfromListPrim sn l - | Refl <- lemAppNil @'[Just n] - = let ssh = SUnknown () :!% ZKX - xarr = X.cast ssh (SKnown sn :$% ZSX) ZKX (X.fromList1 ssh l) - in Shaped $ fromPrimitive $ M_Primitive (X.shape (SKnown sn :!% ZKX) xarr) xarr - -sfromListPrimLinear :: PrimElt a => ShS sh -> [a] -> Shaped sh a -sfromListPrimLinear sh l = - let M_Primitive _ xarr = toPrimitive (mfromListPrim l) - in Shaped $ fromPrimitive $ M_Primitive (shCvtSX sh) (X.reshape (SUnknown () :!% ZKX) (shCvtSX sh) xarr) - -sfromListLinear :: forall sh a. Elt a => ShS sh -> NonEmpty a -> Shaped sh a -sfromListLinear sh l = Shaped (mfromListLinear (shCvtSX sh) l) - -stoListLinear :: Elt a => Shaped sh a -> [a] -stoListLinear (Shaped arr) = mtoListLinear arr - -sfromOrthotope :: PrimElt a => ShS sh -> SS.Array sh a -> Shaped sh a -sfromOrthotope sh (SS.A (SG.A arr)) = - Shaped (fromPrimitive (M_Primitive (shCvtSX sh) (X.XArray (RS.A (RG.A (shsToList sh) arr))))) - -stoOrthotope :: PrimElt a => Shaped sh a -> SS.Array sh a -stoOrthotope (stoPrimitive -> Shaped (M_Primitive _ (X.XArray (RS.A (RG.A _ arr))))) = SS.A (SG.A arr) - -sunScalar :: Elt a => Shaped '[] a -> a -sunScalar arr = sindex arr ZIS - -snest :: forall sh sh' a. Elt a => ShS sh -> Shaped (sh ++ sh') a -> Shaped sh (Shaped sh' a) -snest sh arr - | Refl <- lemMapJustApp sh (Proxy @sh') - = coerce (mnest (ssxFromShape (shCvtSX sh)) (coerce arr)) - -sunNest :: forall sh sh' a. Elt a => Shaped sh (Shaped sh' a) -> Shaped (sh ++ sh') a -sunNest sarr@(Shaped (M_Shaped (M_Nest _ arr))) - | Refl <- lemMapJustApp (sshape sarr) (Proxy @sh') - = Shaped arr - -szip :: Shaped sh a -> Shaped sh b -> Shaped sh (a, b) -szip = coerce mzip - -sunzip :: Shaped sh (a, b) -> (Shaped sh a, Shaped sh b) -sunzip = coerce munzip - -srerankP :: forall sh1 sh2 sh a b. (Storable a, Storable b) - => ShS sh -> ShS sh2 - -> (Shaped sh1 (Primitive a) -> Shaped sh2 (Primitive b)) - -> Shaped (sh ++ sh1) (Primitive a) -> Shaped (sh ++ sh2) (Primitive b) -srerankP sh sh2 f sarr@(Shaped arr) - | Refl <- lemMapJustApp sh (Proxy @sh1) - , Refl <- lemMapJustApp sh (Proxy @sh2) - = Shaped (mrerankP (ssxFromShape (shxTakeSSX (Proxy @(MapJust sh1)) (shCvtSX (sshape sarr)) (ssxFromShape (shCvtSX sh)))) - (shCvtSX sh2) - (\a -> let Shaped r = f (Shaped a) in r) - arr) - -srerank :: forall sh1 sh2 sh a b. (PrimElt a, PrimElt b) - => ShS sh -> ShS sh2 - -> (Shaped sh1 a -> Shaped sh2 b) - -> Shaped (sh ++ sh1) a -> Shaped (sh ++ sh2) b -srerank sh sh2 f (stoPrimitive -> arr) = - sfromPrimitive $ srerankP sh sh2 (stoPrimitive . f . sfromPrimitive) arr - -sreplicate :: forall sh sh' a. Elt a => ShS sh -> Shaped sh' a -> Shaped (sh ++ sh') a -sreplicate sh (Shaped arr) - | Refl <- lemMapJustApp sh (Proxy @sh') - = Shaped (mreplicate (shCvtSX sh) arr) - -sreplicateScalP :: forall sh a. Storable a => ShS sh -> a -> Shaped sh (Primitive a) -sreplicateScalP sh x = Shaped (mreplicateScalP (shCvtSX sh) x) - -sreplicateScal :: PrimElt a => ShS sh -> a -> Shaped sh a -sreplicateScal sh x = sfromPrimitive (sreplicateScalP sh x) - -sslice :: Elt a => SNat i -> SNat n -> Shaped (i + n + k : sh) a -> Shaped (n : sh) a -sslice i n@SNat arr = - let _ :$$ sh = sshape arr - in slift (n :$$ sh) (\_ -> X.slice i n) arr - -srev1 :: Elt a => Shaped (n : sh) a -> Shaped (n : sh) a -srev1 arr = slift (sshape arr) (\_ -> X.rev1) arr - -sreshape :: (Elt a, Product sh ~ Product sh') => ShS sh' -> Shaped sh a -> Shaped sh' a -sreshape sh' (Shaped arr) = Shaped (mreshape (shCvtSX sh') arr) - -sflatten :: Elt a => Shaped sh a -> Shaped '[Product sh] a -sflatten arr = - case shsProduct (sshape arr) of -- TODO: simplify when removing the KnownNat stuff - n@SNat -> sreshape (n :$$ ZSS) arr - -siota :: (Enum a, PrimElt a) => SNat n -> Shaped '[n] a -siota sn = Shaped (miota sn) - --- | Throws if the array is empty. -sminIndexPrim :: (PrimElt a, NumElt a) => Shaped sh a -> IIxS sh -sminIndexPrim sarr@(Shaped arr) = ixCvtXS (sshape (stoPrimitive sarr)) (mminIndexPrim arr) - --- | Throws if the array is empty. -smaxIndexPrim :: (PrimElt a, NumElt a) => Shaped sh a -> IIxS sh -smaxIndexPrim sarr@(Shaped arr) = ixCvtXS (sshape (stoPrimitive sarr)) (mmaxIndexPrim arr) - -sdot1Inner :: forall sh n a. (PrimElt a, NumElt a) - => Proxy n -> Shaped (sh ++ '[n]) a -> Shaped (sh ++ '[n]) a -> Shaped sh a -sdot1Inner Proxy sarr1@(Shaped arr1) (Shaped arr2) - | Refl <- lemInitApp (Proxy @sh) (Proxy @n) - , Refl <- lemLastApp (Proxy @sh) (Proxy @n) - = case sshape sarr1 of - _ :$$ _ - | Refl <- lemMapJustApp (shsInit (sshape sarr1)) (Proxy @'[n]) - -> Shaped (mdot1Inner (Proxy @(Just n)) arr1 arr2) - _ -> error "unreachable" - --- | This has a temporary, suboptimal implementation in terms of 'mflatten'. --- Prefer 'sdot1Inner' if applicable. -sdot :: (PrimElt a, NumElt a) => Shaped sh a -> Shaped sh a -> a -sdot = coerce mdot - -stoXArrayPrimP :: Shaped sh (Primitive a) -> (ShS sh, XArray (MapJust sh) a) -stoXArrayPrimP (Shaped arr) = first shCvtXS' (mtoXArrayPrimP arr) - -stoXArrayPrim :: PrimElt a => Shaped sh a -> (ShS sh, XArray (MapJust sh) a) -stoXArrayPrim (Shaped arr) = first shCvtXS' (mtoXArrayPrim arr) - -sfromXArrayPrimP :: ShS sh -> XArray (MapJust sh) a -> Shaped sh (Primitive a) -sfromXArrayPrimP sh arr = Shaped (mfromXArrayPrimP (ssxFromShape (shCvtSX sh)) arr) - -sfromXArrayPrim :: PrimElt a => ShS sh -> XArray (MapJust sh) a -> Shaped sh a -sfromXArrayPrim sh arr = Shaped (mfromXArrayPrim (ssxFromShape (shCvtSX sh)) arr) - -sfromPrimitive :: PrimElt a => Shaped sh (Primitive a) -> Shaped sh a -sfromPrimitive (Shaped arr) = Shaped (fromPrimitive arr) - -stoPrimitive :: PrimElt a => Shaped sh a -> Shaped sh (Primitive a) -stoPrimitive (Shaped arr) = Shaped (toPrimitive arr) - -mcastToShaped :: forall sh sh' a. (Elt a, Rank sh ~ Rank sh') - => Mixed sh a -> ShS sh' -> Shaped sh' a -mcastToShaped arr targetsh - | Refl <- lemRankMapJust targetsh - = Shaped (mcast (ssxFromShape (shCvtSX targetsh)) arr) - -stoMixed :: forall sh a. Shaped sh a -> Mixed (MapJust sh) a -stoMixed (Shaped arr) = arr - --- | A more weakly-typed version of 'stoMixed' that does a runtime shape --- compatibility check. -scastToMixed :: forall sh sh' a. (Elt a, Rank sh ~ Rank sh') - => StaticShX sh' -> Shaped sh a -> Mixed sh' a -scastToMixed sshx sarr@(Shaped arr) - | Refl <- lemRankMapJust (sshape sarr) - = mcast sshx arr |