aboutsummaryrefslogtreecommitdiff
path: root/src/Data/Array/Nested
diff options
context:
space:
mode:
Diffstat (limited to 'src/Data/Array/Nested')
-rw-r--r--src/Data/Array/Nested/Convert.hs (renamed from src/Data/Array/Nested/Internal/Convert.hs)12
-rw-r--r--src/Data/Array/Nested/Internal/Lemmas.hs4
-rw-r--r--src/Data/Array/Nested/Mixed.hs (renamed from src/Data/Array/Nested/Internal/Mixed.hs)10
-rw-r--r--src/Data/Array/Nested/Mixed/Shape.hs611
-rw-r--r--src/Data/Array/Nested/Ranked.hs (renamed from src/Data/Array/Nested/Internal/Ranked.hs)12
-rw-r--r--src/Data/Array/Nested/Ranked/Shape.hs363
-rw-r--r--src/Data/Array/Nested/Shaped.hs (renamed from src/Data/Array/Nested/Internal/Shaped.hs)12
-rw-r--r--src/Data/Array/Nested/Shaped/Shape.hs (renamed from src/Data/Array/Nested/Internal/Shape.hs)325
8 files changed, 1001 insertions, 348 deletions
diff --git a/src/Data/Array/Nested/Internal/Convert.hs b/src/Data/Array/Nested/Convert.hs
index c316161..639f5fd 100644
--- a/src/Data/Array/Nested/Internal/Convert.hs
+++ b/src/Data/Array/Nested/Convert.hs
@@ -5,20 +5,20 @@
{-# LANGUAGE TypeAbstractions #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
-module Data.Array.Nested.Internal.Convert where
+module Data.Array.Nested.Convert where
import Control.Category
import Data.Proxy
import Data.Type.Equality
import Data.Array.Mixed.Lemmas
-import Data.Array.Mixed.Shape
import Data.Array.Mixed.Types
import Data.Array.Nested.Internal.Lemmas
-import Data.Array.Nested.Internal.Mixed
-import Data.Array.Nested.Internal.Ranked
-import Data.Array.Nested.Internal.Shape
-import Data.Array.Nested.Internal.Shaped
+import Data.Array.Nested.Mixed
+import Data.Array.Nested.Mixed.Shape
+import Data.Array.Nested.Ranked
+import Data.Array.Nested.Shaped
+import Data.Array.Nested.Shaped.Shape
stoRanked :: Elt a => Shaped sh a -> Ranked (Rank sh) a
diff --git a/src/Data/Array/Nested/Internal/Lemmas.hs b/src/Data/Array/Nested/Internal/Lemmas.hs
index f894f78..f4bad70 100644
--- a/src/Data/Array/Nested/Internal/Lemmas.hs
+++ b/src/Data/Array/Nested/Internal/Lemmas.hs
@@ -11,9 +11,9 @@ import GHC.TypeLits
import Data.Array.Mixed.Lemmas
import Data.Array.Mixed.Permutation
-import Data.Array.Mixed.Shape
import Data.Array.Mixed.Types
-import Data.Array.Nested.Internal.Shape
+import Data.Array.Nested.Mixed.Shape
+import Data.Array.Nested.Shaped.Shape
lemRankMapJust :: ShS sh -> Rank (MapJust sh) :~: Rank sh
diff --git a/src/Data/Array/Nested/Internal/Mixed.hs b/src/Data/Array/Nested/Mixed.hs
index a2f9737..ec19c21 100644
--- a/src/Data/Array/Nested/Internal/Mixed.hs
+++ b/src/Data/Array/Nested/Mixed.hs
@@ -16,7 +16,7 @@
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ViewPatterns #-}
-module Data.Array.Nested.Internal.Mixed where
+module Data.Array.Nested.Mixed where
import Prelude hiding (mconcat)
@@ -42,13 +42,13 @@ import GHC.Generics (Generic)
import GHC.TypeLits
import Unsafe.Coerce (unsafeCoerce)
-import Data.Array.Mixed.Internal.Arith
+import Data.Array.Arith
import Data.Array.Mixed.Lemmas
import Data.Array.Mixed.Permutation
-import Data.Array.Mixed.Shape
import Data.Array.Mixed.Types
-import Data.Array.Mixed.XArray (XArray(..))
-import Data.Array.Mixed.XArray qualified as X
+import Data.Array.XArray (XArray(..))
+import Data.Array.XArray qualified as X
+import Data.Array.Nested.Mixed.Shape
import Data.Bag
diff --git a/src/Data/Array/Nested/Mixed/Shape.hs b/src/Data/Array/Nested/Mixed/Shape.hs
new file mode 100644
index 0000000..5f4775c
--- /dev/null
+++ b/src/Data/Array/Nested/Mixed/Shape.hs
@@ -0,0 +1,611 @@
+{-# LANGUAGE DataKinds #-}
+{-# LANGUAGE DeriveGeneric #-}
+{-# LANGUAGE FlexibleInstances #-}
+{-# LANGUAGE GADTs #-}
+{-# LANGUAGE ImportQualifiedPost #-}
+{-# LANGUAGE NoStarIsType #-}
+{-# LANGUAGE PatternSynonyms #-}
+{-# LANGUAGE PolyKinds #-}
+{-# LANGUAGE QuantifiedConstraints #-}
+{-# LANGUAGE RankNTypes #-}
+{-# LANGUAGE RoleAnnotations #-}
+{-# LANGUAGE ScopedTypeVariables #-}
+{-# LANGUAGE StandaloneDeriving #-}
+{-# LANGUAGE StandaloneKindSignatures #-}
+{-# LANGUAGE StrictData #-}
+{-# LANGUAGE TypeApplications #-}
+{-# LANGUAGE TypeFamilies #-}
+{-# LANGUAGE TypeOperators #-}
+{-# LANGUAGE UndecidableInstances #-}
+{-# LANGUAGE ViewPatterns #-}
+{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
+{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
+module Data.Array.Nested.Mixed.Shape where
+
+import Control.DeepSeq (NFData(..))
+import Data.Bifunctor (first)
+import Data.Coerce
+import Data.Foldable qualified as Foldable
+import Data.Functor.Const
+import Data.Functor.Product
+import Data.Kind (Constraint, Type)
+import Data.Monoid (Sum(..))
+import Data.Proxy
+import Data.Type.Equality
+import GHC.Exts (withDict)
+import GHC.Generics (Generic)
+import GHC.IsList (IsList)
+import GHC.IsList qualified as IsList
+import GHC.TypeLits
+
+import Data.Array.Mixed.Types
+
+
+-- | The length of a type-level list. If the argument is a shape, then the
+-- result is the rank of that shape.
+type family Rank sh where
+ Rank '[] = 0
+ Rank (_ : sh) = Rank sh + 1
+
+
+-- * Mixed lists
+
+type role ListX nominal representational
+type ListX :: [Maybe Nat] -> (Maybe Nat -> Type) -> Type
+data ListX sh f where
+ ZX :: ListX '[] f
+ (::%) :: f n -> ListX sh f -> ListX (n : sh) f
+deriving instance (forall n. Eq (f n)) => Eq (ListX sh f)
+deriving instance (forall n. Ord (f n)) => Ord (ListX sh f)
+infixr 3 ::%
+
+instance (forall n. Show (f n)) => Show (ListX sh f) where
+ showsPrec _ = listxShow shows
+
+instance (forall n. NFData (f n)) => NFData (ListX sh f) where
+ rnf ZX = ()
+ rnf (x ::% l) = rnf x `seq` rnf l
+
+data UnconsListXRes f sh1 =
+ forall n sh. (n : sh ~ sh1) => UnconsListXRes (ListX sh f) (f n)
+listxUncons :: ListX sh1 f -> Maybe (UnconsListXRes f sh1)
+listxUncons (i ::% shl') = Just (UnconsListXRes shl' i)
+listxUncons ZX = Nothing
+
+-- | This checks only whether the types are equal; if the elements of the list
+-- are not singletons, their values may still differ. This corresponds to
+-- 'testEquality', except on the penultimate type parameter.
+listxEqType :: TestEquality f => ListX sh f -> ListX sh' f -> Maybe (sh :~: sh')
+listxEqType ZX ZX = Just Refl
+listxEqType (n ::% sh) (m ::% sh')
+ | Just Refl <- testEquality n m
+ , Just Refl <- listxEqType sh sh'
+ = Just Refl
+listxEqType _ _ = Nothing
+
+-- | This checks whether the two lists actually contain equal values. This is
+-- more than 'testEquality', and corresponds to @geq@ from @Data.GADT.Compare@
+-- in the @some@ package (except on the penultimate type parameter).
+listxEqual :: (TestEquality f, forall n. Eq (f n)) => ListX sh f -> ListX sh' f -> Maybe (sh :~: sh')
+listxEqual ZX ZX = Just Refl
+listxEqual (n ::% sh) (m ::% sh')
+ | Just Refl <- testEquality n m
+ , n == m
+ , Just Refl <- listxEqual sh sh'
+ = Just Refl
+listxEqual _ _ = Nothing
+
+listxFmap :: (forall n. f n -> g n) -> ListX sh f -> ListX sh g
+listxFmap _ ZX = ZX
+listxFmap f (x ::% xs) = f x ::% listxFmap f xs
+
+listxFold :: Monoid m => (forall n. f n -> m) -> ListX sh f -> m
+listxFold _ ZX = mempty
+listxFold f (x ::% xs) = f x <> listxFold f xs
+
+listxLength :: ListX sh f -> Int
+listxLength = getSum . listxFold (\_ -> Sum 1)
+
+listxRank :: ListX sh f -> SNat (Rank sh)
+listxRank ZX = SNat
+listxRank (_ ::% l) | SNat <- listxRank l = SNat
+
+listxShow :: forall sh f. (forall n. f n -> ShowS) -> ListX sh f -> ShowS
+listxShow f l = showString "[" . go "" l . showString "]"
+ where
+ go :: String -> ListX sh' f -> ShowS
+ go _ ZX = id
+ go prefix (x ::% xs) = showString prefix . f x . go "," xs
+
+listxFromList :: StaticShX sh -> [i] -> ListX sh (Const i)
+listxFromList topssh topl = go topssh topl
+ where
+ go :: StaticShX sh' -> [i] -> ListX sh' (Const i)
+ go ZKX [] = ZX
+ go (_ :!% sh) (i : is) = Const i ::% go sh is
+ go _ _ = error $ "listxFromList: Mismatched list length (type says "
+ ++ show (ssxLength topssh) ++ ", list has length "
+ ++ show (length topl) ++ ")"
+
+listxToList :: ListX sh' (Const i) -> [i]
+listxToList ZX = []
+listxToList (Const i ::% is) = i : listxToList is
+
+listxHead :: ListX (mn ': sh) f -> f mn
+listxHead (i ::% _) = i
+
+listxTail :: ListX (n : sh) i -> ListX sh i
+listxTail (_ ::% sh) = sh
+
+listxAppend :: ListX sh f -> ListX sh' f -> ListX (sh ++ sh') f
+listxAppend ZX idx' = idx'
+listxAppend (i ::% idx) idx' = i ::% listxAppend idx idx'
+
+listxDrop :: forall f g sh sh'. ListX (sh ++ sh') f -> ListX sh g -> ListX sh' f
+listxDrop long ZX = long
+listxDrop long (_ ::% short) = case long of _ ::% long' -> listxDrop long' short
+
+listxInit :: forall f n sh. ListX (n : sh) f -> ListX (Init (n : sh)) f
+listxInit (i ::% sh@(_ ::% _)) = i ::% listxInit sh
+listxInit (_ ::% ZX) = ZX
+
+listxLast :: forall f n sh. ListX (n : sh) f -> f (Last (n : sh))
+listxLast (_ ::% sh@(_ ::% _)) = listxLast sh
+listxLast (x ::% ZX) = x
+
+listxZip :: ListX sh f -> ListX sh g -> ListX sh (Product f g)
+listxZip ZX ZX = ZX
+listxZip (i ::% irest) (j ::% jrest) =
+ Pair i j ::% listxZip irest jrest
+
+listxZipWith :: (forall a. f a -> g a -> h a) -> ListX sh f -> ListX sh g
+ -> ListX sh h
+listxZipWith _ ZX ZX = ZX
+listxZipWith f (i ::% is) (j ::% js) =
+ f i j ::% listxZipWith f is js
+
+
+-- * Mixed indices
+
+-- | This is a newtype over 'ListX'.
+type role IxX nominal representational
+type IxX :: [Maybe Nat] -> Type -> Type
+newtype IxX sh i = IxX (ListX sh (Const i))
+ deriving (Eq, Ord, Generic)
+
+pattern ZIX :: forall sh i. () => sh ~ '[] => IxX sh i
+pattern ZIX = IxX ZX
+
+pattern (:.%)
+ :: forall {sh1} {i}.
+ forall n sh. (n : sh ~ sh1)
+ => i -> IxX sh i -> IxX sh1 i
+pattern i :.% shl <- IxX (listxUncons -> Just (UnconsListXRes (IxX -> shl) (getConst -> i)))
+ where i :.% IxX shl = IxX (Const i ::% shl)
+infixr 3 :.%
+
+{-# COMPLETE ZIX, (:.%) #-}
+
+type IIxX sh = IxX sh Int
+
+instance Show i => Show (IxX sh i) where
+ showsPrec _ (IxX l) = listxShow (\(Const i) -> shows i) l
+
+instance Functor (IxX sh) where
+ fmap f (IxX l) = IxX (listxFmap (Const . f . getConst) l)
+
+instance Foldable (IxX sh) where
+ foldMap f (IxX l) = listxFold (f . getConst) l
+
+instance NFData i => NFData (IxX sh i)
+
+ixxLength :: IxX sh i -> Int
+ixxLength (IxX l) = listxLength l
+
+ixxRank :: IxX sh i -> SNat (Rank sh)
+ixxRank (IxX l) = listxRank l
+
+ixxZero :: StaticShX sh -> IIxX sh
+ixxZero ZKX = ZIX
+ixxZero (_ :!% ssh) = 0 :.% ixxZero ssh
+
+ixxZero' :: IShX sh -> IIxX sh
+ixxZero' ZSX = ZIX
+ixxZero' (_ :$% sh) = 0 :.% ixxZero' sh
+
+ixxFromList :: forall sh i. StaticShX sh -> [i] -> IxX sh i
+ixxFromList = coerce (listxFromList @_ @i)
+
+ixxHead :: IxX (n : sh) i -> i
+ixxHead (IxX list) = getConst (listxHead list)
+
+ixxTail :: IxX (n : sh) i -> IxX sh i
+ixxTail (IxX list) = IxX (listxTail list)
+
+ixxAppend :: forall sh sh' i. IxX sh i -> IxX sh' i -> IxX (sh ++ sh') i
+ixxAppend = coerce (listxAppend @_ @(Const i))
+
+ixxDrop :: forall sh sh' i. IxX (sh ++ sh') i -> IxX sh i -> IxX sh' i
+ixxDrop = coerce (listxDrop @(Const i) @(Const i))
+
+ixxInit :: forall n sh i. IxX (n : sh) i -> IxX (Init (n : sh)) i
+ixxInit = coerce (listxInit @(Const i))
+
+ixxLast :: forall n sh i. IxX (n : sh) i -> i
+ixxLast = coerce (listxLast @(Const i))
+
+ixxZip :: IxX sh i -> IxX sh j -> IxX sh (i, j)
+ixxZip ZIX ZIX = ZIX
+ixxZip (i :.% is) (j :.% js) = (i, j) :.% ixxZip is js
+
+ixxZipWith :: (i -> j -> k) -> IxX sh i -> IxX sh j -> IxX sh k
+ixxZipWith _ ZIX ZIX = ZIX
+ixxZipWith f (i :.% is) (j :.% js) = f i j :.% ixxZipWith f is js
+
+ixxFromLinear :: IShX sh -> Int -> IIxX sh
+ixxFromLinear = \sh i -> case go sh i of
+ (idx, 0) -> idx
+ _ -> error $ "ixxFromLinear: out of range (" ++ show i ++
+ " in array of shape " ++ show sh ++ ")"
+ where
+ -- returns (index in subarray, remaining index in enclosing array)
+ go :: IShX sh -> Int -> (IIxX sh, Int)
+ go ZSX i = (ZIX, i)
+ go (n :$% sh) i =
+ let (idx, i') = go sh i
+ (upi, locali) = i' `quotRem` fromSMayNat' n
+ in (locali :.% idx, upi)
+
+ixxToLinear :: IShX sh -> IIxX sh -> Int
+ixxToLinear = \sh i -> fst (go sh i)
+ where
+ -- returns (index in subarray, size of subarray)
+ go :: IShX sh -> IIxX sh -> (Int, Int)
+ go ZSX ZIX = (0, 1)
+ go (n :$% sh) (i :.% ix) =
+ let (lidx, sz) = go sh ix
+ in (sz * i + lidx, fromSMayNat' n * sz)
+
+
+-- * Mixed shapes
+
+data SMayNat i f n where
+ SUnknown :: i -> SMayNat i f Nothing
+ SKnown :: f n -> SMayNat i f (Just n)
+deriving instance (Show i, forall m. Show (f m)) => Show (SMayNat i f n)
+deriving instance (Eq i, forall m. Eq (f m)) => Eq (SMayNat i f n)
+deriving instance (Ord i, forall m. Ord (f m)) => Ord (SMayNat i f n)
+
+instance (NFData i, forall m. NFData (f m)) => NFData (SMayNat i f n) where
+ rnf (SUnknown i) = rnf i
+ rnf (SKnown x) = rnf x
+
+instance TestEquality f => TestEquality (SMayNat i f) where
+ testEquality SUnknown{} SUnknown{} = Just Refl
+ testEquality (SKnown n) (SKnown m) | Just Refl <- testEquality n m = Just Refl
+ testEquality _ _ = Nothing
+
+fromSMayNat :: (n ~ Nothing => i -> r)
+ -> (forall m. n ~ Just m => f m -> r)
+ -> SMayNat i f n -> r
+fromSMayNat f _ (SUnknown i) = f i
+fromSMayNat _ g (SKnown s) = g s
+
+fromSMayNat' :: SMayNat Int SNat n -> Int
+fromSMayNat' = fromSMayNat id fromSNat'
+
+type family AddMaybe n m where
+ AddMaybe Nothing _ = Nothing
+ AddMaybe (Just _) Nothing = Nothing
+ AddMaybe (Just n) (Just m) = Just (n + m)
+
+smnAddMaybe :: SMayNat Int SNat n -> SMayNat Int SNat m -> SMayNat Int SNat (AddMaybe n m)
+smnAddMaybe (SUnknown n) m = SUnknown (n + fromSMayNat' m)
+smnAddMaybe (SKnown n) (SUnknown m) = SUnknown (fromSNat' n + m)
+smnAddMaybe (SKnown n) (SKnown m) = SKnown (snatPlus n m)
+
+
+-- | This is a newtype over 'ListX'.
+type role ShX nominal representational
+type ShX :: [Maybe Nat] -> Type -> Type
+newtype ShX sh i = ShX (ListX sh (SMayNat i SNat))
+ deriving (Eq, Ord, Generic)
+
+pattern ZSX :: forall sh i. () => sh ~ '[] => ShX sh i
+pattern ZSX = ShX ZX
+
+pattern (:$%)
+ :: forall {sh1} {i}.
+ forall n sh. (n : sh ~ sh1)
+ => SMayNat i SNat n -> ShX sh i -> ShX sh1 i
+pattern i :$% shl <- ShX (listxUncons -> Just (UnconsListXRes (ShX -> shl) i))
+ where i :$% ShX shl = ShX (i ::% shl)
+infixr 3 :$%
+
+{-# COMPLETE ZSX, (:$%) #-}
+
+type IShX sh = ShX sh Int
+
+instance Show i => Show (ShX sh i) where
+ showsPrec _ (ShX l) = listxShow (fromSMayNat shows (shows . fromSNat)) l
+
+instance Functor (ShX sh) where
+ fmap f (ShX l) = ShX (listxFmap (fromSMayNat (SUnknown . f) SKnown) l)
+
+instance NFData i => NFData (ShX sh i) where
+ rnf (ShX ZX) = ()
+ rnf (ShX (SUnknown i ::% l)) = rnf i `seq` rnf (ShX l)
+ rnf (ShX (SKnown SNat ::% l)) = rnf (ShX l)
+
+-- | This checks only whether the types are equal; unknown dimensions might
+-- still differ. This corresponds to 'testEquality', except on the penultimate
+-- type parameter.
+shxEqType :: ShX sh i -> ShX sh' i -> Maybe (sh :~: sh')
+shxEqType ZSX ZSX = Just Refl
+shxEqType (SKnown n@SNat :$% sh) (SKnown m@SNat :$% sh')
+ | Just Refl <- sameNat n m
+ , Just Refl <- shxEqType sh sh'
+ = Just Refl
+shxEqType (SUnknown _ :$% sh) (SUnknown _ :$% sh')
+ | Just Refl <- shxEqType sh sh'
+ = Just Refl
+shxEqType _ _ = Nothing
+
+-- | This checks whether all dimensions have the same value. This is more than
+-- 'testEquality', and corresponds to @geq@ from @Data.GADT.Compare@ in the
+-- @some@ package (except on the penultimate type parameter).
+shxEqual :: Eq i => ShX sh i -> ShX sh' i -> Maybe (sh :~: sh')
+shxEqual ZSX ZSX = Just Refl
+shxEqual (SKnown n@SNat :$% sh) (SKnown m@SNat :$% sh')
+ | Just Refl <- sameNat n m
+ , Just Refl <- shxEqual sh sh'
+ = Just Refl
+shxEqual (SUnknown i :$% sh) (SUnknown j :$% sh')
+ | i == j
+ , Just Refl <- shxEqual sh sh'
+ = Just Refl
+shxEqual _ _ = Nothing
+
+shxLength :: ShX sh i -> Int
+shxLength (ShX l) = listxLength l
+
+shxRank :: ShX sh i -> SNat (Rank sh)
+shxRank (ShX l) = listxRank l
+
+-- | The number of elements in an array described by this shape.
+shxSize :: IShX sh -> Int
+shxSize ZSX = 1
+shxSize (n :$% sh) = fromSMayNat' n * shxSize sh
+
+shxFromList :: StaticShX sh -> [Int] -> ShX sh Int
+shxFromList topssh topl = go topssh topl
+ where
+ go :: StaticShX sh' -> [Int] -> ShX sh' Int
+ go ZKX [] = ZSX
+ go (SKnown sn :!% sh) (i : is)
+ | i == fromSNat' sn = SKnown sn :$% go sh is
+ | otherwise = error $ "shxFromList: Value does not match typing (type says "
+ ++ show (fromSNat' sn) ++ ", list contains " ++ show i ++ ")"
+ go (SUnknown () :!% sh) (i : is) = SUnknown i :$% go sh is
+ go _ _ = error $ "shxFromList: Mismatched list length (type says "
+ ++ show (ssxLength topssh) ++ ", list has length "
+ ++ show (length topl) ++ ")"
+
+shxToList :: IShX sh -> [Int]
+shxToList ZSX = []
+shxToList (smn :$% sh) = fromSMayNat' smn : shxToList sh
+
+shxAppend :: forall sh sh' i. ShX sh i -> ShX sh' i -> ShX (sh ++ sh') i
+shxAppend = coerce (listxAppend @_ @(SMayNat i SNat))
+
+shxHead :: ShX (n : sh) i -> SMayNat i SNat n
+shxHead (ShX list) = listxHead list
+
+shxTail :: ShX (n : sh) i -> ShX sh i
+shxTail (ShX list) = ShX (listxTail list)
+
+shxDropSSX :: forall sh sh' i. ShX (sh ++ sh') i -> StaticShX sh -> ShX sh' i
+shxDropSSX = coerce (listxDrop @(SMayNat i SNat) @(SMayNat () SNat))
+
+shxDropIx :: forall sh sh' i j. ShX (sh ++ sh') i -> IxX sh j -> ShX sh' i
+shxDropIx = coerce (listxDrop @(SMayNat i SNat) @(Const j))
+
+shxDropSh :: forall sh sh' i. ShX (sh ++ sh') i -> ShX sh i -> ShX sh' i
+shxDropSh = coerce (listxDrop @(SMayNat i SNat) @(SMayNat i SNat))
+
+shxInit :: forall n sh i. ShX (n : sh) i -> ShX (Init (n : sh)) i
+shxInit = coerce (listxInit @(SMayNat i SNat))
+
+shxLast :: forall n sh i. ShX (n : sh) i -> SMayNat i SNat (Last (n : sh))
+shxLast = coerce (listxLast @(SMayNat i SNat))
+
+shxTakeSSX :: forall sh sh' i. Proxy sh' -> ShX (sh ++ sh') i -> StaticShX sh -> ShX sh i
+shxTakeSSX _ = flip go
+ where
+ go :: StaticShX sh1 -> ShX (sh1 ++ sh') i -> ShX sh1 i
+ go ZKX _ = ZSX
+ go (_ :!% ssh1) (n :$% sh) = n :$% go ssh1 sh
+
+shxZipWith :: (forall n. SMayNat i SNat n -> SMayNat j SNat n -> SMayNat k SNat n)
+ -> ShX sh i -> ShX sh j -> ShX sh k
+shxZipWith _ ZSX ZSX = ZSX
+shxZipWith f (i :$% is) (j :$% js) = f i j :$% shxZipWith f is js
+
+-- This is a weird operation, so it has a long name
+shxCompleteZeros :: StaticShX sh -> IShX sh
+shxCompleteZeros ZKX = ZSX
+shxCompleteZeros (SUnknown () :!% ssh) = SUnknown 0 :$% shxCompleteZeros ssh
+shxCompleteZeros (SKnown n :!% ssh) = SKnown n :$% shxCompleteZeros ssh
+
+shxSplitApp :: Proxy sh' -> StaticShX sh -> ShX (sh ++ sh') i -> (ShX sh i, ShX sh' i)
+shxSplitApp _ ZKX idx = (ZSX, idx)
+shxSplitApp p (_ :!% ssh) (i :$% idx) = first (i :$%) (shxSplitApp p ssh idx)
+
+shxEnum :: IShX sh -> [IIxX sh]
+shxEnum = \sh -> go sh id []
+ where
+ go :: IShX sh -> (IIxX sh -> a) -> [a] -> [a]
+ go ZSX f = (f ZIX :)
+ go (n :$% sh) f = foldr (.) id [go sh (f . (i :.%)) | i <- [0 .. fromSMayNat' n - 1]]
+
+shxCast :: IShX sh -> StaticShX sh' -> Maybe (IShX sh')
+shxCast ZSX ZKX = Just ZSX
+shxCast (SKnown n :$% sh) (SKnown m :!% ssh) | Just Refl <- testEquality n m = (SKnown n :$%) <$> shxCast sh ssh
+shxCast (SUnknown n :$% sh) (SKnown m :!% ssh) | n == fromSNat' m = (SKnown m :$%) <$> shxCast sh ssh
+shxCast (SKnown n :$% sh) (SUnknown () :!% ssh) = (SUnknown (fromSNat' n) :$%) <$> shxCast sh ssh
+shxCast (SUnknown n :$% sh) (SUnknown () :!% ssh) = (SUnknown n :$%) <$> shxCast sh ssh
+shxCast _ _ = Nothing
+
+-- | Partial version of 'shxCast'.
+shxCast' :: IShX sh -> StaticShX sh' -> IShX sh'
+shxCast' sh ssh = case shxCast sh ssh of
+ Just sh' -> sh'
+ Nothing -> error $ "shxCast': Mismatch: (" ++ show sh ++ ") does not match (" ++ show ssh ++ ")"
+
+
+-- * Static mixed shapes
+
+-- | The part of a shape that is statically known. (A newtype over 'ListX'.)
+type StaticShX :: [Maybe Nat] -> Type
+newtype StaticShX sh = StaticShX (ListX sh (SMayNat () SNat))
+ deriving (Eq, Ord)
+
+pattern ZKX :: forall sh. () => sh ~ '[] => StaticShX sh
+pattern ZKX = StaticShX ZX
+
+pattern (:!%)
+ :: forall {sh1}.
+ forall n sh. (n : sh ~ sh1)
+ => SMayNat () SNat n -> StaticShX sh -> StaticShX sh1
+pattern i :!% shl <- StaticShX (listxUncons -> Just (UnconsListXRes (StaticShX -> shl) i))
+ where i :!% StaticShX shl = StaticShX (i ::% shl)
+infixr 3 :!%
+
+{-# COMPLETE ZKX, (:!%) #-}
+
+instance Show (StaticShX sh) where
+ showsPrec _ (StaticShX l) = listxShow (fromSMayNat shows (shows . fromSNat)) l
+
+instance NFData (StaticShX sh) where
+ rnf (StaticShX ZX) = ()
+ rnf (StaticShX (SUnknown () ::% l)) = rnf (StaticShX l)
+ rnf (StaticShX (SKnown SNat ::% l)) = rnf (StaticShX l)
+
+instance TestEquality StaticShX where
+ testEquality (StaticShX l1) (StaticShX l2) = listxEqType l1 l2
+
+ssxLength :: StaticShX sh -> Int
+ssxLength (StaticShX l) = listxLength l
+
+ssxRank :: StaticShX sh -> SNat (Rank sh)
+ssxRank (StaticShX l) = listxRank l
+
+-- | @ssxEqType = 'testEquality'@. Provided for consistency.
+ssxEqType :: StaticShX sh -> StaticShX sh' -> Maybe (sh :~: sh')
+ssxEqType = testEquality
+
+ssxAppend :: StaticShX sh -> StaticShX sh' -> StaticShX (sh ++ sh')
+ssxAppend ZKX sh' = sh'
+ssxAppend (n :!% sh) sh' = n :!% ssxAppend sh sh'
+
+ssxHead :: StaticShX (n : sh) -> SMayNat () SNat n
+ssxHead (StaticShX list) = listxHead list
+
+ssxTail :: StaticShX (n : sh) -> StaticShX sh
+ssxTail (_ :!% ssh) = ssh
+
+ssxDropIx :: forall sh sh' i. StaticShX (sh ++ sh') -> IxX sh i -> StaticShX sh'
+ssxDropIx = coerce (listxDrop @(SMayNat () SNat) @(Const i))
+
+ssxInit :: forall n sh. StaticShX (n : sh) -> StaticShX (Init (n : sh))
+ssxInit = coerce (listxInit @(SMayNat () SNat))
+
+ssxLast :: forall n sh. StaticShX (n : sh) -> SMayNat () SNat (Last (n : sh))
+ssxLast = coerce (listxLast @(SMayNat () SNat))
+
+-- | This may fail if @sh@ has @Nothing@s in it.
+ssxToShX' :: StaticShX sh -> Maybe (IShX sh)
+ssxToShX' ZKX = Just ZSX
+ssxToShX' (SKnown n :!% sh) = (SKnown n :$%) <$> ssxToShX' sh
+ssxToShX' (SUnknown _ :!% _) = Nothing
+
+ssxReplicate :: SNat n -> StaticShX (Replicate n Nothing)
+ssxReplicate SZ = ZKX
+ssxReplicate (SS (n :: SNat n'))
+ | Refl <- lemReplicateSucc @(Nothing @Nat) @n'
+ = SUnknown () :!% ssxReplicate n
+
+ssxIotaFrom :: Int -> StaticShX sh -> [Int]
+ssxIotaFrom _ ZKX = []
+ssxIotaFrom i (_ :!% ssh) = i : ssxIotaFrom (i+1) ssh
+
+ssxFromShape :: IShX sh -> StaticShX sh
+ssxFromShape ZSX = ZKX
+ssxFromShape (n :$% sh) = fromSMayNat (\_ -> SUnknown ()) SKnown n :!% ssxFromShape sh
+
+ssxFromSNat :: SNat n -> StaticShX (Replicate n Nothing)
+ssxFromSNat SZ = ZKX
+ssxFromSNat (SS (n :: SNat nm1)) | Refl <- lemReplicateSucc @(Nothing @Nat) @nm1 = SUnknown () :!% ssxFromSNat n
+
+
+-- | Evidence for the static part of a shape. This pops up only when you are
+-- polymorphic in the element type of an array.
+type KnownShX :: [Maybe Nat] -> Constraint
+class KnownShX sh where knownShX :: StaticShX sh
+instance KnownShX '[] where knownShX = ZKX
+instance (KnownNat n, KnownShX sh) => KnownShX (Just n : sh) where knownShX = SKnown natSing :!% knownShX
+instance KnownShX sh => KnownShX (Nothing : sh) where knownShX = SUnknown () :!% knownShX
+
+withKnownShX :: forall sh r. StaticShX sh -> (KnownShX sh => r) -> r
+withKnownShX k = withDict @(KnownShX sh) k
+
+
+-- * Flattening
+
+type Flatten sh = Flatten' 1 sh
+
+type family Flatten' acc sh where
+ Flatten' acc '[] = Just acc
+ Flatten' acc (Nothing : sh) = Nothing
+ Flatten' acc (Just n : sh) = Flatten' (acc * n) sh
+
+-- This function is currently unused
+ssxFlatten :: StaticShX sh -> SMayNat () SNat (Flatten sh)
+ssxFlatten = go (SNat @1)
+ where
+ go :: SNat acc -> StaticShX sh -> SMayNat () SNat (Flatten' acc sh)
+ go acc ZKX = SKnown acc
+ go _ (SUnknown () :!% _) = SUnknown ()
+ go acc (SKnown sn :!% sh) = go (snatMul acc sn) sh
+
+shxFlatten :: IShX sh -> SMayNat Int SNat (Flatten sh)
+shxFlatten = go (SNat @1)
+ where
+ go :: SNat acc -> IShX sh -> SMayNat Int SNat (Flatten' acc sh)
+ go acc ZSX = SKnown acc
+ go acc (SUnknown n :$% sh) = SUnknown (goUnknown (fromSNat' acc * n) sh)
+ go acc (SKnown sn :$% sh) = go (snatMul acc sn) sh
+
+ goUnknown :: Int -> IShX sh -> Int
+ goUnknown acc ZSX = acc
+ goUnknown acc (SUnknown n :$% sh) = goUnknown (acc * n) sh
+ goUnknown acc (SKnown sn :$% sh) = goUnknown (acc * fromSNat' sn) sh
+
+
+-- | Very untyped: only length is checked (at runtime).
+instance KnownShX sh => IsList (ListX sh (Const i)) where
+ type Item (ListX sh (Const i)) = i
+ fromList = listxFromList (knownShX @sh)
+ toList = listxToList
+
+-- | Very untyped: only length is checked (at runtime), index bounds are __not checked__.
+instance KnownShX sh => IsList (IxX sh i) where
+ type Item (IxX sh i) = i
+ fromList = IxX . IsList.fromList
+ toList = Foldable.toList
+
+-- | Untyped: length and known dimensions are checked (at runtime).
+instance KnownShX sh => IsList (ShX sh Int) where
+ type Item (ShX sh Int) = Int
+ fromList = shxFromList (knownShX @sh)
+ toList = shxToList
diff --git a/src/Data/Array/Nested/Internal/Ranked.hs b/src/Data/Array/Nested/Ranked.hs
index daf0374..e2074ac 100644
--- a/src/Data/Array/Nested/Internal/Ranked.hs
+++ b/src/Data/Array/Nested/Ranked.hs
@@ -17,7 +17,7 @@
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
-module Data.Array.Nested.Internal.Ranked where
+module Data.Array.Nested.Ranked where
import Prelude hiding (mappend, mconcat)
@@ -40,12 +40,12 @@ import GHC.TypeNats qualified as TN
import Data.Array.Mixed.Lemmas
import Data.Array.Mixed.Permutation
-import Data.Array.Mixed.Shape
import Data.Array.Mixed.Types
-import Data.Array.Mixed.XArray (XArray(..))
-import Data.Array.Mixed.XArray qualified as X
-import Data.Array.Nested.Internal.Mixed
-import Data.Array.Nested.Internal.Shape
+import Data.Array.XArray (XArray(..))
+import Data.Array.XArray qualified as X
+import Data.Array.Nested.Mixed
+import Data.Array.Nested.Mixed.Shape
+import Data.Array.Nested.Ranked.Shape
import Data.Array.Strided.Arith
diff --git a/src/Data/Array/Nested/Ranked/Shape.hs b/src/Data/Array/Nested/Ranked/Shape.hs
new file mode 100644
index 0000000..1c0b9eb
--- /dev/null
+++ b/src/Data/Array/Nested/Ranked/Shape.hs
@@ -0,0 +1,363 @@
+{-# LANGUAGE DataKinds #-}
+{-# LANGUAGE DeriveFoldable #-}
+{-# LANGUAGE DeriveFunctor #-}
+{-# LANGUAGE DeriveGeneric #-}
+{-# LANGUAGE DerivingStrategies #-}
+{-# LANGUAGE FlexibleInstances #-}
+{-# LANGUAGE GADTs #-}
+{-# LANGUAGE GeneralizedNewtypeDeriving #-}
+{-# LANGUAGE ImportQualifiedPost #-}
+{-# LANGUAGE NoStarIsType #-}
+{-# LANGUAGE PatternSynonyms #-}
+{-# LANGUAGE PolyKinds #-}
+{-# LANGUAGE QuantifiedConstraints #-}
+{-# LANGUAGE RankNTypes #-}
+{-# LANGUAGE RoleAnnotations #-}
+{-# LANGUAGE ScopedTypeVariables #-}
+{-# LANGUAGE StandaloneDeriving #-}
+{-# LANGUAGE StandaloneKindSignatures #-}
+{-# LANGUAGE StrictData #-}
+{-# LANGUAGE TypeApplications #-}
+{-# LANGUAGE TypeFamilies #-}
+{-# LANGUAGE TypeOperators #-}
+{-# LANGUAGE UndecidableInstances #-}
+{-# LANGUAGE ViewPatterns #-}
+{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
+{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
+module Data.Array.Nested.Ranked.Shape where
+
+import Control.DeepSeq (NFData(..))
+import Data.Array.Mixed.Types
+import Data.Coerce (coerce)
+import Data.Foldable qualified as Foldable
+import Data.Kind (Type)
+import Data.Proxy
+import Data.Type.Equality
+import GHC.Generics (Generic)
+import GHC.IsList (IsList)
+import GHC.IsList qualified as IsList
+import GHC.TypeLits
+import GHC.TypeNats qualified as TN
+
+import Data.Array.Mixed.Lemmas
+import Data.Array.Nested.Mixed.Shape
+
+
+type role ListR nominal representational
+type ListR :: Nat -> Type -> Type
+data ListR n i where
+ ZR :: ListR 0 i
+ (:::) :: forall n {i}. i -> ListR n i -> ListR (n + 1) i
+deriving instance Eq i => Eq (ListR n i)
+deriving instance Ord i => Ord (ListR n i)
+deriving instance Functor (ListR n)
+deriving instance Foldable (ListR n)
+infixr 3 :::
+
+instance Show i => Show (ListR n i) where
+ showsPrec _ = listrShow shows
+
+instance NFData i => NFData (ListR n i) where
+ rnf ZR = ()
+ rnf (x ::: l) = rnf x `seq` rnf l
+
+data UnconsListRRes i n1 =
+ forall n. (n + 1 ~ n1) => UnconsListRRes (ListR n i) i
+listrUncons :: ListR n1 i -> Maybe (UnconsListRRes i n1)
+listrUncons (i ::: sh') = Just (UnconsListRRes sh' i)
+listrUncons ZR = Nothing
+
+-- | This checks only whether the ranks are equal, not whether the actual
+-- values are.
+listrEqRank :: ListR n i -> ListR n' i -> Maybe (n :~: n')
+listrEqRank ZR ZR = Just Refl
+listrEqRank (_ ::: sh) (_ ::: sh')
+ | Just Refl <- listrEqRank sh sh'
+ = Just Refl
+listrEqRank _ _ = Nothing
+
+-- | This compares the lists for value equality.
+listrEqual :: Eq i => ListR n i -> ListR n' i -> Maybe (n :~: n')
+listrEqual ZR ZR = Just Refl
+listrEqual (i ::: sh) (j ::: sh')
+ | Just Refl <- listrEqual sh sh'
+ , i == j
+ = Just Refl
+listrEqual _ _ = Nothing
+
+listrShow :: forall n i. (i -> ShowS) -> ListR n i -> ShowS
+listrShow f l = showString "[" . go "" l . showString "]"
+ where
+ go :: String -> ListR n' i -> ShowS
+ go _ ZR = id
+ go prefix (x ::: xs) = showString prefix . f x . go "," xs
+
+listrLength :: ListR n i -> Int
+listrLength = length
+
+listrRank :: ListR n i -> SNat n
+listrRank ZR = SNat
+listrRank (_ ::: sh) = snatSucc (listrRank sh)
+
+listrAppend :: ListR n i -> ListR m i -> ListR (n + m) i
+listrAppend ZR sh = sh
+listrAppend (x ::: xs) sh = x ::: listrAppend xs sh
+
+listrFromList :: [i] -> (forall n. ListR n i -> r) -> r
+listrFromList [] k = k ZR
+listrFromList (x : xs) k = listrFromList xs $ \l -> k (x ::: l)
+
+listrHead :: ListR (n + 1) i -> i
+listrHead (i ::: _) = i
+listrHead ZR = error "unreachable"
+
+listrTail :: ListR (n + 1) i -> ListR n i
+listrTail (_ ::: sh) = sh
+listrTail ZR = error "unreachable"
+
+listrInit :: ListR (n + 1) i -> ListR n i
+listrInit (n ::: sh@(_ ::: _)) = n ::: listrInit sh
+listrInit (_ ::: ZR) = ZR
+listrInit ZR = error "unreachable"
+
+listrLast :: ListR (n + 1) i -> i
+listrLast (_ ::: sh@(_ ::: _)) = listrLast sh
+listrLast (n ::: ZR) = n
+listrLast ZR = error "unreachable"
+
+listrIndex :: forall k n i. (k + 1 <= n) => SNat k -> ListR n i -> i
+listrIndex SZ (x ::: _) = x
+listrIndex (SS i) (_ ::: xs) | Refl <- lemLeqSuccSucc (Proxy @k) (Proxy @n) = listrIndex i xs
+listrIndex _ ZR = error "k + 1 <= 0"
+
+listrZip :: ListR n i -> ListR n j -> ListR n (i, j)
+listrZip ZR ZR = ZR
+listrZip (i ::: irest) (j ::: jrest) = (i, j) ::: listrZip irest jrest
+listrZip _ _ = error "listrZip: impossible pattern needlessly required"
+
+listrZipWith :: (i -> j -> k) -> ListR n i -> ListR n j -> ListR n k
+listrZipWith _ ZR ZR = ZR
+listrZipWith f (i ::: irest) (j ::: jrest) =
+ f i j ::: listrZipWith f irest jrest
+listrZipWith _ _ _ =
+ error "listrZipWith: impossible pattern needlessly required"
+
+listrPermutePrefix :: forall i n. [Int] -> ListR n i -> ListR n i
+listrPermutePrefix = \perm sh ->
+ listrFromList perm $ \sperm ->
+ case (listrRank sperm, listrRank sh) of
+ (permlen@SNat, shlen@SNat) -> case cmpNat permlen shlen of
+ LTI -> let (pre, post) = listrSplitAt permlen sh in listrAppend (applyPermRFull permlen sperm pre) post
+ EQI -> let (pre, post) = listrSplitAt permlen sh in listrAppend (applyPermRFull permlen sperm pre) post
+ GTI -> error $ "Length of permutation (" ++ show (fromSNat' permlen) ++ ")"
+ ++ " > length of shape (" ++ show (fromSNat' shlen) ++ ")"
+ where
+ listrSplitAt :: m <= n' => SNat m -> ListR n' i -> (ListR m i, ListR (n' - m) i)
+ listrSplitAt SZ sh = (ZR, sh)
+ listrSplitAt (SS m) (n ::: sh) = (\(pre, post) -> (n ::: pre, post)) (listrSplitAt m sh)
+ listrSplitAt SS{} ZR = error "m' + 1 <= 0"
+
+ applyPermRFull :: SNat m -> ListR k Int -> ListR m i -> ListR k i
+ applyPermRFull _ ZR _ = ZR
+ applyPermRFull sm@SNat (i ::: perm) l =
+ TN.withSomeSNat (fromIntegral i) $ \si@(SNat :: SNat idx) ->
+ case cmpNat (SNat @(idx + 1)) sm of
+ LTI -> listrIndex si l ::: applyPermRFull sm perm l
+ EQI -> listrIndex si l ::: applyPermRFull sm perm l
+ GTI -> error "listrPermutePrefix: Index in permutation out of range"
+
+
+-- | An index into a rank-typed array.
+type role IxR nominal representational
+type IxR :: Nat -> Type -> Type
+newtype IxR n i = IxR (ListR n i)
+ deriving (Eq, Ord, Generic)
+ deriving newtype (Functor, Foldable)
+
+pattern ZIR :: forall n i. () => n ~ 0 => IxR n i
+pattern ZIR = IxR ZR
+
+pattern (:.:)
+ :: forall {n1} {i}.
+ forall n. (n + 1 ~ n1)
+ => i -> IxR n i -> IxR n1 i
+pattern i :.: sh <- IxR (listrUncons -> Just (UnconsListRRes (IxR -> sh) i))
+ where i :.: IxR sh = IxR (i ::: sh)
+infixr 3 :.:
+
+{-# COMPLETE ZIR, (:.:) #-}
+
+type IIxR n = IxR n Int
+
+instance Show i => Show (IxR n i) where
+ showsPrec _ (IxR l) = listrShow shows l
+
+instance NFData i => NFData (IxR sh i)
+
+ixrLength :: IxR sh i -> Int
+ixrLength (IxR l) = listrLength l
+
+ixrRank :: IxR n i -> SNat n
+ixrRank (IxR sh) = listrRank sh
+
+ixrZero :: SNat n -> IIxR n
+ixrZero SZ = ZIR
+ixrZero (SS n) = 0 :.: ixrZero n
+
+ixCvtXR :: IIxX sh -> IIxR (Rank sh)
+ixCvtXR ZIX = ZIR
+ixCvtXR (n :.% idx) = n :.: ixCvtXR idx
+
+ixCvtRX :: IIxR n -> IIxX (Replicate n Nothing)
+ixCvtRX ZIR = ZIX
+ixCvtRX (n :.: (idx :: IxR m Int)) =
+ castWith (subst2 @IxX @Int (lemReplicateSucc @(Nothing @Nat) @m))
+ (n :.% ixCvtRX idx)
+
+ixrHead :: IxR (n + 1) i -> i
+ixrHead (IxR list) = listrHead list
+
+ixrTail :: IxR (n + 1) i -> IxR n i
+ixrTail (IxR list) = IxR (listrTail list)
+
+ixrInit :: IxR (n + 1) i -> IxR n i
+ixrInit (IxR list) = IxR (listrInit list)
+
+ixrLast :: IxR (n + 1) i -> i
+ixrLast (IxR list) = listrLast list
+
+ixrAppend :: forall n m i. IxR n i -> IxR m i -> IxR (n + m) i
+ixrAppend = coerce (listrAppend @_ @i)
+
+ixrZip :: IxR n i -> IxR n j -> IxR n (i, j)
+ixrZip (IxR l1) (IxR l2) = IxR $ listrZip l1 l2
+
+ixrZipWith :: (i -> j -> k) -> IxR n i -> IxR n j -> IxR n k
+ixrZipWith f (IxR l1) (IxR l2) = IxR $ listrZipWith f l1 l2
+
+ixrPermutePrefix :: forall n i. [Int] -> IxR n i -> IxR n i
+ixrPermutePrefix = coerce (listrPermutePrefix @i)
+
+
+type role ShR nominal representational
+type ShR :: Nat -> Type -> Type
+newtype ShR n i = ShR (ListR n i)
+ deriving (Eq, Ord, Generic)
+ deriving newtype (Functor, Foldable)
+
+pattern ZSR :: forall n i. () => n ~ 0 => ShR n i
+pattern ZSR = ShR ZR
+
+pattern (:$:)
+ :: forall {n1} {i}.
+ forall n. (n + 1 ~ n1)
+ => i -> ShR n i -> ShR n1 i
+pattern i :$: sh <- ShR (listrUncons -> Just (UnconsListRRes (ShR -> sh) i))
+ where i :$: ShR sh = ShR (i ::: sh)
+infixr 3 :$:
+
+{-# COMPLETE ZSR, (:$:) #-}
+
+type IShR n = ShR n Int
+
+instance Show i => Show (ShR n i) where
+ showsPrec _ (ShR l) = listrShow shows l
+
+instance NFData i => NFData (ShR sh i)
+
+shCvtXR' :: forall n. IShX (Replicate n Nothing) -> IShR n
+shCvtXR' ZSX =
+ castWith (subst2 (unsafeCoerceRefl :: 0 :~: n))
+ ZSR
+shCvtXR' (n :$% (idx :: IShX sh))
+ | Refl <- lemReplicateSucc @(Nothing @Nat) @(n - 1) =
+ castWith (subst2 (lem1 @sh Refl))
+ (fromSMayNat' n :$: shCvtXR' (castWith (subst2 (lem2 Refl)) idx))
+ where
+ lem1 :: forall sh' n' k.
+ k : sh' :~: Replicate n' Nothing
+ -> Rank sh' + 1 :~: n'
+ lem1 Refl = unsafeCoerceRefl
+
+ lem2 :: k : sh :~: Replicate n Nothing
+ -> sh :~: Replicate (Rank sh) Nothing
+ lem2 Refl = unsafeCoerceRefl
+
+shCvtRX :: IShR n -> IShX (Replicate n Nothing)
+shCvtRX ZSR = ZSX
+shCvtRX (n :$: (idx :: ShR m Int)) =
+ castWith (subst2 @ShX @Int (lemReplicateSucc @(Nothing @Nat) @m))
+ (SUnknown n :$% shCvtRX idx)
+
+-- | This checks only whether the ranks are equal, not whether the actual
+-- values are.
+shrEqRank :: ShR n i -> ShR n' i -> Maybe (n :~: n')
+shrEqRank (ShR sh) (ShR sh') = listrEqRank sh sh'
+
+-- | This compares the shapes for value equality.
+shrEqual :: Eq i => ShR n i -> ShR n' i -> Maybe (n :~: n')
+shrEqual (ShR sh) (ShR sh') = listrEqual sh sh'
+
+shrLength :: ShR sh i -> Int
+shrLength (ShR l) = listrLength l
+
+-- | This function can also be used to conjure up a 'KnownNat' dictionary;
+-- pattern matching on the returned 'SNat' with the 'pattern SNat' pattern
+-- synonym yields 'KnownNat' evidence.
+shrRank :: ShR n i -> SNat n
+shrRank (ShR sh) = listrRank sh
+
+-- | The number of elements in an array described by this shape.
+shrSize :: IShR n -> Int
+shrSize ZSR = 1
+shrSize (n :$: sh) = n * shrSize sh
+
+shrHead :: ShR (n + 1) i -> i
+shrHead (ShR list) = listrHead list
+
+shrTail :: ShR (n + 1) i -> ShR n i
+shrTail (ShR list) = ShR (listrTail list)
+
+shrInit :: ShR (n + 1) i -> ShR n i
+shrInit (ShR list) = ShR (listrInit list)
+
+shrLast :: ShR (n + 1) i -> i
+shrLast (ShR list) = listrLast list
+
+shrAppend :: forall n m i. ShR n i -> ShR m i -> ShR (n + m) i
+shrAppend = coerce (listrAppend @_ @i)
+
+shrZip :: ShR n i -> ShR n j -> ShR n (i, j)
+shrZip (ShR l1) (ShR l2) = ShR $ listrZip l1 l2
+
+shrZipWith :: (i -> j -> k) -> ShR n i -> ShR n j -> ShR n k
+shrZipWith f (ShR l1) (ShR l2) = ShR $ listrZipWith f l1 l2
+
+shrPermutePrefix :: forall n i. [Int] -> ShR n i -> ShR n i
+shrPermutePrefix = coerce (listrPermutePrefix @i)
+
+
+-- | Untyped: length is checked at runtime.
+instance KnownNat n => IsList (ListR n i) where
+ type Item (ListR n i) = i
+ fromList topl = go (SNat @n) topl
+ where
+ go :: SNat n' -> [i] -> ListR n' i
+ go SZ [] = ZR
+ go (SS n) (i : is) = i ::: go n is
+ go _ _ = error $ "IsList(ListR): Mismatched list length (type says "
+ ++ show (fromSNat (SNat @n)) ++ ", list has length "
+ ++ show (length topl) ++ ")"
+ toList = Foldable.toList
+
+-- | Untyped: length is checked at runtime.
+instance KnownNat n => IsList (IxR n i) where
+ type Item (IxR n i) = i
+ fromList = IxR . IsList.fromList
+ toList = Foldable.toList
+
+-- | Untyped: length is checked at runtime.
+instance KnownNat n => IsList (ShR n i) where
+ type Item (ShR n i) = i
+ fromList = ShR . IsList.fromList
+ toList = Foldable.toList
diff --git a/src/Data/Array/Nested/Internal/Shaped.hs b/src/Data/Array/Nested/Shaped.hs
index 372439f..4bccbc4 100644
--- a/src/Data/Array/Nested/Internal/Shaped.hs
+++ b/src/Data/Array/Nested/Shaped.hs
@@ -16,7 +16,7 @@
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
-module Data.Array.Nested.Internal.Shaped where
+module Data.Array.Nested.Shaped where
import Prelude hiding (mappend, mconcat)
@@ -40,13 +40,13 @@ import GHC.TypeLits
import Data.Array.Mixed.Lemmas
import Data.Array.Mixed.Permutation
-import Data.Array.Mixed.Shape
import Data.Array.Mixed.Types
-import Data.Array.Mixed.XArray (XArray)
-import Data.Array.Mixed.XArray qualified as X
+import Data.Array.XArray (XArray)
+import Data.Array.XArray qualified as X
import Data.Array.Nested.Internal.Lemmas
-import Data.Array.Nested.Internal.Mixed
-import Data.Array.Nested.Internal.Shape
+import Data.Array.Nested.Mixed
+import Data.Array.Nested.Mixed.Shape
+import Data.Array.Nested.Shaped.Shape
import Data.Array.Strided.Arith
diff --git a/src/Data/Array/Nested/Internal/Shape.hs b/src/Data/Array/Nested/Shaped/Shape.hs
index 97b9456..6c43fa7 100644
--- a/src/Data/Array/Nested/Internal/Shape.hs
+++ b/src/Data/Array/Nested/Shaped/Shape.hs
@@ -24,7 +24,7 @@
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
-module Data.Array.Nested.Internal.Shape where
+module Data.Array.Nested.Shaped.Shape where
import Control.DeepSeq (NFData(..))
import Data.Array.Mixed.Types
@@ -42,331 +42,10 @@ import GHC.Generics (Generic)
import GHC.IsList (IsList)
import GHC.IsList qualified as IsList
import GHC.TypeLits
-import GHC.TypeNats qualified as TN
import Data.Array.Mixed.Lemmas
import Data.Array.Mixed.Permutation
-import Data.Array.Mixed.Shape
-
-
-type role ListR nominal representational
-type ListR :: Nat -> Type -> Type
-data ListR n i where
- ZR :: ListR 0 i
- (:::) :: forall n {i}. i -> ListR n i -> ListR (n + 1) i
-deriving instance Eq i => Eq (ListR n i)
-deriving instance Ord i => Ord (ListR n i)
-deriving instance Functor (ListR n)
-deriving instance Foldable (ListR n)
-infixr 3 :::
-
-instance Show i => Show (ListR n i) where
- showsPrec _ = listrShow shows
-
-instance NFData i => NFData (ListR n i) where
- rnf ZR = ()
- rnf (x ::: l) = rnf x `seq` rnf l
-
-data UnconsListRRes i n1 =
- forall n. (n + 1 ~ n1) => UnconsListRRes (ListR n i) i
-listrUncons :: ListR n1 i -> Maybe (UnconsListRRes i n1)
-listrUncons (i ::: sh') = Just (UnconsListRRes sh' i)
-listrUncons ZR = Nothing
-
--- | This checks only whether the ranks are equal, not whether the actual
--- values are.
-listrEqRank :: ListR n i -> ListR n' i -> Maybe (n :~: n')
-listrEqRank ZR ZR = Just Refl
-listrEqRank (_ ::: sh) (_ ::: sh')
- | Just Refl <- listrEqRank sh sh'
- = Just Refl
-listrEqRank _ _ = Nothing
-
--- | This compares the lists for value equality.
-listrEqual :: Eq i => ListR n i -> ListR n' i -> Maybe (n :~: n')
-listrEqual ZR ZR = Just Refl
-listrEqual (i ::: sh) (j ::: sh')
- | Just Refl <- listrEqual sh sh'
- , i == j
- = Just Refl
-listrEqual _ _ = Nothing
-
-listrShow :: forall n i. (i -> ShowS) -> ListR n i -> ShowS
-listrShow f l = showString "[" . go "" l . showString "]"
- where
- go :: String -> ListR n' i -> ShowS
- go _ ZR = id
- go prefix (x ::: xs) = showString prefix . f x . go "," xs
-
-listrLength :: ListR n i -> Int
-listrLength = length
-
-listrRank :: ListR n i -> SNat n
-listrRank ZR = SNat
-listrRank (_ ::: sh) = snatSucc (listrRank sh)
-
-listrAppend :: ListR n i -> ListR m i -> ListR (n + m) i
-listrAppend ZR sh = sh
-listrAppend (x ::: xs) sh = x ::: listrAppend xs sh
-
-listrFromList :: [i] -> (forall n. ListR n i -> r) -> r
-listrFromList [] k = k ZR
-listrFromList (x : xs) k = listrFromList xs $ \l -> k (x ::: l)
-
-listrHead :: ListR (n + 1) i -> i
-listrHead (i ::: _) = i
-listrHead ZR = error "unreachable"
-
-listrTail :: ListR (n + 1) i -> ListR n i
-listrTail (_ ::: sh) = sh
-listrTail ZR = error "unreachable"
-
-listrInit :: ListR (n + 1) i -> ListR n i
-listrInit (n ::: sh@(_ ::: _)) = n ::: listrInit sh
-listrInit (_ ::: ZR) = ZR
-listrInit ZR = error "unreachable"
-
-listrLast :: ListR (n + 1) i -> i
-listrLast (_ ::: sh@(_ ::: _)) = listrLast sh
-listrLast (n ::: ZR) = n
-listrLast ZR = error "unreachable"
-
-listrIndex :: forall k n i. (k + 1 <= n) => SNat k -> ListR n i -> i
-listrIndex SZ (x ::: _) = x
-listrIndex (SS i) (_ ::: xs) | Refl <- lemLeqSuccSucc (Proxy @k) (Proxy @n) = listrIndex i xs
-listrIndex _ ZR = error "k + 1 <= 0"
-
-listrZip :: ListR n i -> ListR n j -> ListR n (i, j)
-listrZip ZR ZR = ZR
-listrZip (i ::: irest) (j ::: jrest) = (i, j) ::: listrZip irest jrest
-listrZip _ _ = error "listrZip: impossible pattern needlessly required"
-
-listrZipWith :: (i -> j -> k) -> ListR n i -> ListR n j -> ListR n k
-listrZipWith _ ZR ZR = ZR
-listrZipWith f (i ::: irest) (j ::: jrest) =
- f i j ::: listrZipWith f irest jrest
-listrZipWith _ _ _ =
- error "listrZipWith: impossible pattern needlessly required"
-
-listrPermutePrefix :: forall i n. [Int] -> ListR n i -> ListR n i
-listrPermutePrefix = \perm sh ->
- listrFromList perm $ \sperm ->
- case (listrRank sperm, listrRank sh) of
- (permlen@SNat, shlen@SNat) -> case cmpNat permlen shlen of
- LTI -> let (pre, post) = listrSplitAt permlen sh in listrAppend (applyPermRFull permlen sperm pre) post
- EQI -> let (pre, post) = listrSplitAt permlen sh in listrAppend (applyPermRFull permlen sperm pre) post
- GTI -> error $ "Length of permutation (" ++ show (fromSNat' permlen) ++ ")"
- ++ " > length of shape (" ++ show (fromSNat' shlen) ++ ")"
- where
- listrSplitAt :: m <= n' => SNat m -> ListR n' i -> (ListR m i, ListR (n' - m) i)
- listrSplitAt SZ sh = (ZR, sh)
- listrSplitAt (SS m) (n ::: sh) = (\(pre, post) -> (n ::: pre, post)) (listrSplitAt m sh)
- listrSplitAt SS{} ZR = error "m' + 1 <= 0"
-
- applyPermRFull :: SNat m -> ListR k Int -> ListR m i -> ListR k i
- applyPermRFull _ ZR _ = ZR
- applyPermRFull sm@SNat (i ::: perm) l =
- TN.withSomeSNat (fromIntegral i) $ \si@(SNat :: SNat idx) ->
- case cmpNat (SNat @(idx + 1)) sm of
- LTI -> listrIndex si l ::: applyPermRFull sm perm l
- EQI -> listrIndex si l ::: applyPermRFull sm perm l
- GTI -> error "listrPermutePrefix: Index in permutation out of range"
-
-
--- | An index into a rank-typed array.
-type role IxR nominal representational
-type IxR :: Nat -> Type -> Type
-newtype IxR n i = IxR (ListR n i)
- deriving (Eq, Ord, Generic)
- deriving newtype (Functor, Foldable)
-
-pattern ZIR :: forall n i. () => n ~ 0 => IxR n i
-pattern ZIR = IxR ZR
-
-pattern (:.:)
- :: forall {n1} {i}.
- forall n. (n + 1 ~ n1)
- => i -> IxR n i -> IxR n1 i
-pattern i :.: sh <- IxR (listrUncons -> Just (UnconsListRRes (IxR -> sh) i))
- where i :.: IxR sh = IxR (i ::: sh)
-infixr 3 :.:
-
-{-# COMPLETE ZIR, (:.:) #-}
-
-type IIxR n = IxR n Int
-
-instance Show i => Show (IxR n i) where
- showsPrec _ (IxR l) = listrShow shows l
-
-instance NFData i => NFData (IxR sh i)
-
-ixrLength :: IxR sh i -> Int
-ixrLength (IxR l) = listrLength l
-
-ixrRank :: IxR n i -> SNat n
-ixrRank (IxR sh) = listrRank sh
-
-ixrZero :: SNat n -> IIxR n
-ixrZero SZ = ZIR
-ixrZero (SS n) = 0 :.: ixrZero n
-
-ixCvtXR :: IIxX sh -> IIxR (Rank sh)
-ixCvtXR ZIX = ZIR
-ixCvtXR (n :.% idx) = n :.: ixCvtXR idx
-
-ixCvtRX :: IIxR n -> IIxX (Replicate n Nothing)
-ixCvtRX ZIR = ZIX
-ixCvtRX (n :.: (idx :: IxR m Int)) =
- castWith (subst2 @IxX @Int (lemReplicateSucc @(Nothing @Nat) @m))
- (n :.% ixCvtRX idx)
-
-ixrHead :: IxR (n + 1) i -> i
-ixrHead (IxR list) = listrHead list
-
-ixrTail :: IxR (n + 1) i -> IxR n i
-ixrTail (IxR list) = IxR (listrTail list)
-
-ixrInit :: IxR (n + 1) i -> IxR n i
-ixrInit (IxR list) = IxR (listrInit list)
-
-ixrLast :: IxR (n + 1) i -> i
-ixrLast (IxR list) = listrLast list
-
-ixrAppend :: forall n m i. IxR n i -> IxR m i -> IxR (n + m) i
-ixrAppend = coerce (listrAppend @_ @i)
-
-ixrZip :: IxR n i -> IxR n j -> IxR n (i, j)
-ixrZip (IxR l1) (IxR l2) = IxR $ listrZip l1 l2
-
-ixrZipWith :: (i -> j -> k) -> IxR n i -> IxR n j -> IxR n k
-ixrZipWith f (IxR l1) (IxR l2) = IxR $ listrZipWith f l1 l2
-
-ixrPermutePrefix :: forall n i. [Int] -> IxR n i -> IxR n i
-ixrPermutePrefix = coerce (listrPermutePrefix @i)
-
-
-type role ShR nominal representational
-type ShR :: Nat -> Type -> Type
-newtype ShR n i = ShR (ListR n i)
- deriving (Eq, Ord, Generic)
- deriving newtype (Functor, Foldable)
-
-pattern ZSR :: forall n i. () => n ~ 0 => ShR n i
-pattern ZSR = ShR ZR
-
-pattern (:$:)
- :: forall {n1} {i}.
- forall n. (n + 1 ~ n1)
- => i -> ShR n i -> ShR n1 i
-pattern i :$: sh <- ShR (listrUncons -> Just (UnconsListRRes (ShR -> sh) i))
- where i :$: ShR sh = ShR (i ::: sh)
-infixr 3 :$:
-
-{-# COMPLETE ZSR, (:$:) #-}
-
-type IShR n = ShR n Int
-
-instance Show i => Show (ShR n i) where
- showsPrec _ (ShR l) = listrShow shows l
-
-instance NFData i => NFData (ShR sh i)
-
-shCvtXR' :: forall n. IShX (Replicate n Nothing) -> IShR n
-shCvtXR' ZSX =
- castWith (subst2 (unsafeCoerceRefl :: 0 :~: n))
- ZSR
-shCvtXR' (n :$% (idx :: IShX sh))
- | Refl <- lemReplicateSucc @(Nothing @Nat) @(n - 1) =
- castWith (subst2 (lem1 @sh Refl))
- (fromSMayNat' n :$: shCvtXR' (castWith (subst2 (lem2 Refl)) idx))
- where
- lem1 :: forall sh' n' k.
- k : sh' :~: Replicate n' Nothing
- -> Rank sh' + 1 :~: n'
- lem1 Refl = unsafeCoerceRefl
-
- lem2 :: k : sh :~: Replicate n Nothing
- -> sh :~: Replicate (Rank sh) Nothing
- lem2 Refl = unsafeCoerceRefl
-
-shCvtRX :: IShR n -> IShX (Replicate n Nothing)
-shCvtRX ZSR = ZSX
-shCvtRX (n :$: (idx :: ShR m Int)) =
- castWith (subst2 @ShX @Int (lemReplicateSucc @(Nothing @Nat) @m))
- (SUnknown n :$% shCvtRX idx)
-
--- | This checks only whether the ranks are equal, not whether the actual
--- values are.
-shrEqRank :: ShR n i -> ShR n' i -> Maybe (n :~: n')
-shrEqRank (ShR sh) (ShR sh') = listrEqRank sh sh'
-
--- | This compares the shapes for value equality.
-shrEqual :: Eq i => ShR n i -> ShR n' i -> Maybe (n :~: n')
-shrEqual (ShR sh) (ShR sh') = listrEqual sh sh'
-
-shrLength :: ShR sh i -> Int
-shrLength (ShR l) = listrLength l
-
--- | This function can also be used to conjure up a 'KnownNat' dictionary;
--- pattern matching on the returned 'SNat' with the 'pattern SNat' pattern
--- synonym yields 'KnownNat' evidence.
-shrRank :: ShR n i -> SNat n
-shrRank (ShR sh) = listrRank sh
-
--- | The number of elements in an array described by this shape.
-shrSize :: IShR n -> Int
-shrSize ZSR = 1
-shrSize (n :$: sh) = n * shrSize sh
-
-shrHead :: ShR (n + 1) i -> i
-shrHead (ShR list) = listrHead list
-
-shrTail :: ShR (n + 1) i -> ShR n i
-shrTail (ShR list) = ShR (listrTail list)
-
-shrInit :: ShR (n + 1) i -> ShR n i
-shrInit (ShR list) = ShR (listrInit list)
-
-shrLast :: ShR (n + 1) i -> i
-shrLast (ShR list) = listrLast list
-
-shrAppend :: forall n m i. ShR n i -> ShR m i -> ShR (n + m) i
-shrAppend = coerce (listrAppend @_ @i)
-
-shrZip :: ShR n i -> ShR n j -> ShR n (i, j)
-shrZip (ShR l1) (ShR l2) = ShR $ listrZip l1 l2
-
-shrZipWith :: (i -> j -> k) -> ShR n i -> ShR n j -> ShR n k
-shrZipWith f (ShR l1) (ShR l2) = ShR $ listrZipWith f l1 l2
-
-shrPermutePrefix :: forall n i. [Int] -> ShR n i -> ShR n i
-shrPermutePrefix = coerce (listrPermutePrefix @i)
-
-
--- | Untyped: length is checked at runtime.
-instance KnownNat n => IsList (ListR n i) where
- type Item (ListR n i) = i
- fromList topl = go (SNat @n) topl
- where
- go :: SNat n' -> [i] -> ListR n' i
- go SZ [] = ZR
- go (SS n) (i : is) = i ::: go n is
- go _ _ = error $ "IsList(ListR): Mismatched list length (type says "
- ++ show (fromSNat (SNat @n)) ++ ", list has length "
- ++ show (length topl) ++ ")"
- toList = Foldable.toList
-
--- | Untyped: length is checked at runtime.
-instance KnownNat n => IsList (IxR n i) where
- type Item (IxR n i) = i
- fromList = IxR . IsList.fromList
- toList = Foldable.toList
-
--- | Untyped: length is checked at runtime.
-instance KnownNat n => IsList (ShR n i) where
- type Item (ShR n i) = i
- fromList = ShR . IsList.fromList
- toList = Foldable.toList
+import Data.Array.Nested.Mixed.Shape
type role ListS nominal representational