1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
module Data.Array.Strided.Arith.Internal where
import Control.Monad
import Data.Bifunctor (second)
import Data.Bits
import Data.Int
import Data.List (sort, zip4)
import Data.Proxy
import Data.Type.Equality
import qualified Data.Vector.Storable as VS
import qualified Data.Vector.Storable.Mutable as VSM
import Foreign.C.Types
import Foreign.Ptr
import Foreign.Storable
import qualified GHC.TypeNats as TypeNats
import GHC.TypeLits
import Language.Haskell.TH
import System.IO (hFlush, stdout)
import System.IO.Unsafe
import Data.Array.Strided.Array
import Data.Array.Strided.Arith.Internal.Lists
import Data.Array.Strided.Arith.Internal.Foreign
-- TODO: need to sort strides for reduction-like functions so that the C inner-loop specialisation has some chance of working even after transposition
-- TODO: move this to a utilities module
fromSNat' :: SNat n -> Int
fromSNat' = fromIntegral . fromSNat
data Dict c where
Dict :: c => Dict c
debugShow :: forall n a. (Storable a, KnownNat n) => Array n a -> String
debugShow (Array sh strides offset vec) =
"Array @" ++ (show (natVal (Proxy @n))) ++ " " ++ show sh ++ " " ++ show strides ++ " " ++ show offset ++ " <_*" ++ show (VS.length vec) ++ ">"
-- TODO: test all the cases of this thing with various input strides
liftOpEltwise1 :: (Storable a, Storable b)
=> SNat n
-> (Ptr a -> Ptr b)
-> (Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ())
-> Array n a -> Array n a
liftOpEltwise1 sn@SNat ptrconv cf_strided arr@(Array sh strides offset vec)
| Just (blockOff, blockSz) <- stridesDense sh offset strides =
if blockSz == 0
then Array sh (map (const 0) strides) 0 VS.empty
else let resvec = arrValues $ wrapUnary sn ptrconv cf_strided (Array [fromIntegral blockSz] [1] blockOff vec)
in Array sh strides (offset - blockOff) resvec
| otherwise = wrapUnary sn ptrconv cf_strided arr
-- TODO: test all the cases of this thing with various input strides
liftOpEltwise2 :: Storable a
=> SNat n
-> (a -> b)
-> (Ptr a -> Ptr b)
-> (a -> a -> a)
-> (Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ()) -- ^ sv
-> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> b -> IO ()) -- ^ vs
-> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ()) -- ^ vv
-> Array n a -> Array n a -> Array n a
liftOpEltwise2 sn@SNat valconv ptrconv f_ss f_sv f_vs f_vv
arr1@(Array sh1 strides1 offset1 vec1)
arr2@(Array sh2 strides2 offset2 vec2)
| sh1 /= sh2 = error $ "liftOpEltwise2: shapes unequal: " ++ show sh1 ++ " vs " ++ show sh2
| any (<= 0) sh1 = Array sh1 (0 <$ strides1) 0 VS.empty
| otherwise = case (stridesDense sh1 offset1 strides1, stridesDense sh2 offset2 strides2) of
(Just (_, 1), Just (_, 1)) -> -- both are a (potentially replicated) scalar; just apply f to the scalars
let vec' = VS.singleton (f_ss (vec1 VS.! offset1) (vec2 VS.! offset2))
in Array sh1 strides1 0 vec'
(Just (_, 1), Just (blockOff, blockSz)) -> -- scalar * dense
let arr2' = arrayFromVector [blockSz] (VS.slice blockOff blockSz vec2)
resvec = arrValues $ wrapBinarySV (SNat @1) valconv ptrconv f_sv (vec1 VS.! offset1) arr2'
in Array sh1 strides2 (offset2 - blockOff) resvec
(Just (_, 1), Nothing) -> -- scalar * array
wrapBinarySV sn valconv ptrconv f_sv (vec1 VS.! offset1) arr2
(Just (blockOff, blockSz), Just (_, 1)) -> -- dense * scalar
let arr1' = arrayFromVector [blockSz] (VS.slice blockOff blockSz vec1)
resvec = arrValues $ wrapBinaryVS (SNat @1) valconv ptrconv f_vs arr1' (vec2 VS.! offset2)
in Array sh1 strides1 (offset1 - blockOff) resvec
(Nothing, Just (_, 1)) -> -- array * scalar
wrapBinaryVS sn valconv ptrconv f_vs arr1 (vec2 VS.! offset2)
(Just (blockOff1, blockSz1), Just (blockOff2, blockSz2))
| strides1 == strides2
-> -- dense * dense but the strides match
if blockSz1 /= blockSz2 || offset1 - blockOff1 /= offset2 - blockOff2
then error $ "Data.Array.Strided.Ops.Internal(liftOpEltwise2): Internal error: cannot happen " ++ show (strides1, (blockOff1, blockSz1), strides2, (blockOff2, blockSz2))
else
let arr1' = arrayFromVector [blockSz1] (VS.slice blockOff1 blockSz1 vec1)
arr2' = arrayFromVector [blockSz1] (VS.slice blockOff2 blockSz2 vec2)
resvec = arrValues $ wrapBinaryVV (SNat @1) ptrconv f_vv arr1' arr2'
in Array sh1 strides1 (offset1 - blockOff1) resvec
(_, _) -> -- fallback case
wrapBinaryVV sn ptrconv f_vv arr1 arr2
-- | Given shape vector, offset and stride vector, check whether this virtual
-- vector uses a dense subarray of its backing array. If so, the first index
-- and the number of elements in this subarray is returned.
-- This excludes any offset.
stridesDense :: [Int] -> Int -> [Int] -> Maybe (Int, Int)
stridesDense sh offset _ | any (<= 0) sh = Just (offset, 0)
stridesDense sh offsetNeg stridesNeg =
-- First reverse all dimensions with negative stride, so that the first used
-- value is at 'offset' and the rest is >= offset.
let (offset, strides) = flipReverseds sh offsetNeg stridesNeg
in -- sort dimensions on their stride, ascending, dropping any zero strides
case filter ((/= 0) . fst) (sort (zip strides sh)) of
[] -> Just (offset, 1)
(1, n) : pairs -> (offset,) <$> checkCover n pairs
_ -> Nothing -- if the smallest stride is not 1, it will never be dense
where
-- Given size of currently densely covered region at beginning of the
-- array and the remaining (stride, size) pairs with all strides >=1,
-- return whether this all together covers a dense prefix of the array. If
-- it does, return the number of elements in this prefix.
checkCover :: Int -> [(Int, Int)] -> Maybe Int
checkCover block [] = Just block
checkCover block ((s, n) : pairs) = guard (s <= block) >> checkCover ((n-1) * s + block) pairs
-- Given shape, offset and strides, returns new (offset, strides) such that all strides are >=0
flipReverseds :: [Int] -> Int -> [Int] -> (Int, [Int])
flipReverseds [] off [] = (off, [])
flipReverseds (n : sh') off (s : str')
| s >= 0 = second (s :) (flipReverseds sh' off str')
| otherwise =
let off' = off + (n - 1) * s
in second ((-s) :) (flipReverseds sh' off' str')
flipReverseds _ _ _ = error "flipReverseds: invalid arguments"
data Unreplicated a =
forall n'. KnownNat n' =>
-- | Let the original array, with replicated dimensions, be called A.
Unreplicated -- | An array with all strides /= 0. Call this array U. It has
-- the same shape as A, except with all the replicated (stride
-- == 0) dimensions removed. The shape of U is the
-- "unreplicated shape".
(Array n' a)
-- | Product of sizes of the unreplicated dimensions
Int
-- | Given the stride vector of an array with the unreplicated
-- shape, this function reinserts zeros so that it may be
-- combined with the original shape of A.
([Int] -> [Int])
-- | Removes all replicated dimensions (i.e. those with stride == 0) from the array.
unreplicateStrides :: Array n a -> Unreplicated a
unreplicateStrides (Array sh strides offset vec) =
let replDims = map (== 0) strides
(shF, stridesF) = unzip [(n, s) | (n, s) <- zip sh strides, s /= 0]
reinsertZeros (False : zeros) (s : strides') = s : reinsertZeros zeros strides'
reinsertZeros (True : zeros) strides' = 0 : reinsertZeros zeros strides'
reinsertZeros [] [] = []
reinsertZeros (False : _) [] = error $ "unreplicateStrides: Internal error: reply strides too short"
reinsertZeros [] (_:_) = error $ "unreplicateStrides: Internal error: reply strides too long"
unrepSize = product [n | (n, True) <- zip sh replDims]
in TypeNats.withSomeSNat (fromIntegral (length shF)) $ \(SNat :: SNat lenshF) ->
Unreplicated (Array @lenshF shF stridesF offset vec) unrepSize (reinsertZeros replDims)
simplifyArray :: Array n a
-> (forall n'. KnownNat n'
=> Array n' a -- U
-- Product of sizes of the unreplicated dimensions
-> Int
-- Convert index in U back to index into original
-- array. Replicated dimensions get 0.
-> ([Int] -> [Int])
-- Given a new array of the same shape as U, convert
-- it back to the original shape and iteration order.
-> (Array n' a -> Array n a)
-- Do the same except without the INNER dimension.
-- This throws an error if the inner dimension had
-- stride 0.
-> (Array (n' - 1) a -> Array (n - 1) a)
-> r)
-> r
simplifyArray array k
| let revDims = map (<0) (arrStrides array)
, Unreplicated array' unrepSize rereplicate <- unreplicateStrides (arrayRevDims revDims array)
= k array'
unrepSize
(\idx -> rereplicate (zipWith3 (\b n i -> if b then n - 1 - i else i)
revDims (arrShape array') idx))
(\(Array sh' strides' offset' vec') ->
if sh' == arrShape array'
then arrayRevDims revDims (Array (arrShape array) (rereplicate strides') offset' vec')
else error $ "simplifyArray: Internal error: reply shape wrong (reply " ++ show sh' ++ ", unreplicated " ++ show (arrShape array') ++ ")")
(\(Array sh' strides' offset' vec') ->
if | sh' /= init (arrShape array') ->
error $ "simplifyArray: Internal error: reply shape wrong (reply " ++ show sh' ++ ", unreplicated " ++ show (arrShape array') ++ ")"
| last (arrStrides array) == 0 ->
error $ "simplifyArray: Internal error: reduction reply handler used while inner stride was 0"
| otherwise ->
arrayRevDims (init revDims) (Array (init (arrShape array)) (init (rereplicate (strides' ++ [0]))) offset' vec'))
-- | The two input arrays must have the same shape.
simplifyArray2 :: Array n a -> Array n a
-> (forall n'. KnownNat n'
=> Array n' a -- U1
-> Array n' a -- U2 (same shape as U1)
-- Product of sizes of the dimensions that are
-- replicated in neither input
-> Int
-- Convert index in U{1,2} back to index into original
-- arrays. Dimensions that are replicated in both
-- inputs get 0.
-> ([Int] -> [Int])
-- Given a new array of the same shape as U1 (& U2),
-- convert it back to the original shape and
-- iteration order.
-> (Array n' a -> Array n a)
-- Do the same except without the INNER dimension.
-- This throws an error if the inner dimension had
-- stride 0 in both inputs.
-> (Array (n' - 1) a -> Array (n - 1) a)
-> r)
-> r
simplifyArray2 arr1@(Array sh _ _ _) arr2@(Array sh2 _ _ _) k
| sh /= sh2 = error "simplifyArray2: Unequal shapes"
| let revDims = zipWith (\s1 s2 -> s1 < 0 && s2 < 0) (arrStrides arr1) (arrStrides arr2)
, Array _ strides1 offset1 vec1 <- arrayRevDims revDims arr1
, Array _ strides2 offset2 vec2 <- arrayRevDims revDims arr2
, let replDims = zipWith (\s1 s2 -> s1 == 0 && s2 == 0) strides1 strides2
, let (shF, strides1F, strides2F) = unzip3 [(n, s1, s2) | (n, s1, s2, False) <- zip4 sh strides1 strides2 replDims]
, let reinsertZeros (False : zeros) (s : strides') = s : reinsertZeros zeros strides'
reinsertZeros (True : zeros) strides' = 0 : reinsertZeros zeros strides'
reinsertZeros [] [] = []
reinsertZeros (False : _) [] = error $ "simplifyArray2: Internal error: reply strides too short"
reinsertZeros [] (_:_) = error $ "simplifyArray2: Internal error: reply strides too long"
, let unrepSize = product [n | (n, True) <- zip sh replDims]
= TypeNats.withSomeSNat (fromIntegral (length shF)) $ \(SNat :: SNat lenshF) ->
k @lenshF
(Array shF strides1F offset1 vec1)
(Array shF strides2F offset2 vec2)
unrepSize
(\idx -> zipWith3 (\b n i -> if b then n - 1 - i else i)
revDims sh (reinsertZeros replDims idx))
(\(Array sh' strides' offset' vec') ->
if sh' /= shF then error $ "simplifyArray2: Internal error: reply shape wrong (reply " ++ show sh' ++ ", unreplicated " ++ show shF ++ ")"
else arrayRevDims revDims (Array sh (reinsertZeros replDims strides') offset' vec'))
(\(Array sh' strides' offset' vec') ->
if | sh' /= init shF ->
error $ "simplifyArray2: Internal error: reply shape wrong (reply " ++ show sh' ++ ", unreplicated " ++ show shF ++ ")"
| last replDims ->
error $ "simplifyArray2: Internal error: reduction reply handler used while inner dimension was unreplicated"
| otherwise ->
arrayRevDims (init revDims) (Array (init sh) (reinsertZeros (init replDims) strides') offset' vec'))
{-# NOINLINE wrapUnary #-}
wrapUnary :: forall a b n. Storable a
=> SNat n
-> (Ptr a -> Ptr b)
-> (Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ())
-> Array n a
-> Array n a
wrapUnary _ ptrconv cf_strided array =
simplifyArray array $ \(Array sh strides offset vec) _ _ restore _ -> unsafePerformIO $ do
let ndims' = length sh
outv <- VSM.unsafeNew (product sh)
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith (VS.fromListN ndims' (map fromIntegral sh)) $ \psh ->
VS.unsafeWith (VS.fromListN ndims' (map fromIntegral strides)) $ \pstrides ->
VS.unsafeWith vec $ \pv ->
let pv' = pv `plusPtr` (offset * sizeOf (undefined :: a))
in cf_strided (fromIntegral ndims') (ptrconv poutv) psh pstrides pv'
restore . arrayFromVector sh <$> VS.unsafeFreeze outv
{-# NOINLINE wrapBinarySV #-}
wrapBinarySV :: forall a b n. Storable a
=> SNat n
-> (a -> b)
-> (Ptr a -> Ptr b)
-> (Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ())
-> a -> Array n a
-> Array n a
wrapBinarySV SNat valconv ptrconv cf_strided x array =
simplifyArray array $ \(Array sh strides offset vec) _ _ restore _ -> unsafePerformIO $ do
let ndims' = length sh
outv <- VSM.unsafeNew (product sh)
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith (VS.fromListN ndims' (map fromIntegral sh)) $ \psh ->
VS.unsafeWith (VS.fromListN ndims' (map fromIntegral strides)) $ \pstrides ->
VS.unsafeWith vec $ \pv ->
let pv' = pv `plusPtr` (offset * sizeOf (undefined :: a))
in cf_strided (fromIntegral ndims') psh (ptrconv poutv) (valconv x) pstrides pv'
restore . arrayFromVector sh <$> VS.unsafeFreeze outv
wrapBinaryVS :: Storable a
=> SNat n
-> (a -> b)
-> (Ptr a -> Ptr b)
-> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> b -> IO ())
-> Array n a -> a
-> Array n a
wrapBinaryVS sn valconv ptrconv cf_strided arr y =
wrapBinarySV sn valconv ptrconv
(\rank psh poutv y' pstrides pv -> cf_strided rank psh poutv pstrides pv y') y arr
-- | The two shapes must be equal and non-empty. This is checked.
{-# NOINLINE wrapBinaryVV #-}
wrapBinaryVV :: forall a b n. Storable a
=> SNat n
-> (Ptr a -> Ptr b)
-> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ())
-> Array n a -> Array n a
-> Array n a
-- TODO: do unreversing and unreplication on the input arrays (but
-- simultaneously: can only unreplicate if _both_ are replicated on that
-- dimension)
wrapBinaryVV sn@SNat ptrconv cf_strided
(Array sh strides1 offset1 vec1)
(Array sh2 strides2 offset2 vec2)
| sh /= sh2 = error $ "wrapBinaryVV: unequal shapes: " ++ show sh ++ " and " ++ show sh2
| any (<= 0) sh = error $ "wrapBinaryVV: empty shape: " ++ show sh
| otherwise = unsafePerformIO $ do
outv <- VSM.unsafeNew (product sh)
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral sh)) $ \psh ->
VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral strides1)) $ \pstrides1 ->
VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral strides2)) $ \pstrides2 ->
VS.unsafeWith vec1 $ \pv1 ->
VS.unsafeWith vec2 $ \pv2 ->
let pv1' = pv1 `plusPtr` (offset1 * sizeOf (undefined :: a))
pv2' = pv2 `plusPtr` (offset2 * sizeOf (undefined :: a))
in cf_strided (fromIntegral (fromSNat' sn)) psh (ptrconv poutv) pstrides1 pv1' pstrides2 pv2'
arrayFromVector sh <$> VS.unsafeFreeze outv
-- TODO: test handling of negative strides
-- | Reduce along the inner dimension
{-# NOINLINE vectorRedInnerOp #-}
vectorRedInnerOp :: forall a b n. (Num a, Storable a)
=> SNat n
-> (a -> b)
-> (Ptr a -> Ptr b)
-> (Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ()) -- ^ scale by constant
-> (Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ reduction kernel
-> Array (n + 1) a -> Array n a
vectorRedInnerOp sn@SNat valconv ptrconv fscale fred array@(Array sh strides offset vec)
| null sh = error "unreachable"
| last sh <= 0 = arrayFromConstant (init sh) 0
| any (<= 0) (init sh) = Array (init sh) (0 <$ init strides) 0 VS.empty
-- now the input array is nonempty
| last sh == 1 = Array (init sh) (init strides) offset vec
| last strides == 0 =
wrapBinarySV sn valconv ptrconv fscale (fromIntegral @Int @a (last sh))
(Array (init sh) (init strides) offset vec)
-- now there is useful work along the inner dimension
-- Note that unreplication keeps the inner dimension intact, because `last strides /= 0` at this point.
| otherwise =
simplifyArray array $ \(Array sh' strides' offset' vec' :: Array n' a) _ _ _ restore -> unsafePerformIO $ do
let ndims' = length sh'
outv <- VSM.unsafeNew (product (init sh'))
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith (VS.fromListN ndims' (map fromIntegral sh')) $ \psh ->
VS.unsafeWith (VS.fromListN ndims' (map fromIntegral strides')) $ \pstrides ->
VS.unsafeWith vec' $ \pv ->
let pv' = pv `plusPtr` (offset' * sizeOf (undefined :: a))
in fred (fromIntegral ndims') (ptrconv poutv) psh pstrides (ptrconv pv')
TypeNats.withSomeSNat (fromIntegral (ndims' - 1)) $ \(SNat :: SNat n'm1) -> do
(Dict :: Dict (1 <= n')) <- case cmpNat (natSing @1) (natSing @n') of
LTI -> pure Dict
EQI -> pure Dict
_ -> error "impossible" -- because `last strides /= 0`
case sameNat (natSing @(n' - 1)) (natSing @n'm1) of
Just Refl -> restore . arrayFromVector @_ @n'm1 (init sh') <$> VS.unsafeFreeze outv
Nothing -> error "impossible"
-- TODO: test handling of negative strides
-- | Reduce full array
{-# NOINLINE vectorRedFullOp #-}
vectorRedFullOp :: forall a b n. (Num a, Storable a)
=> SNat n
-> (a -> Int -> a)
-> (b -> a)
-> (Ptr a -> Ptr b)
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO b) -- ^ reduction kernel
-> Array n a -> a
vectorRedFullOp _ scaleval valbackconv ptrconv fred array@(Array sh strides offset vec)
| null sh = vec VS.! offset -- 0D array has one element
| any (<= 0) sh = 0
-- now the input array is nonempty
| all (== 0) strides = fromIntegral (product sh) * vec VS.! offset
-- now there is at least one non-replicated dimension
| otherwise =
simplifyArray array $ \(Array sh' strides' offset' vec') unrepSize _ _ _ -> unsafePerformIO $ do
let ndims' = length sh'
VS.unsafeWith (VS.fromListN ndims' (map fromIntegral sh')) $ \psh ->
VS.unsafeWith (VS.fromListN ndims' (map fromIntegral strides')) $ \pstrides ->
VS.unsafeWith vec' $ \pv ->
let pv' = pv `plusPtr` (offset' * sizeOf (undefined :: a))
in (`scaleval` unrepSize) . valbackconv
<$> fred (fromIntegral ndims') psh pstrides (ptrconv pv')
-- TODO: test this function
-- | Find extremum (minindex ("argmin") or maxindex) in full array
{-# NOINLINE vectorExtremumOp #-}
vectorExtremumOp :: forall a b n. Storable a
=> (Ptr a -> Ptr b)
-> (Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ extremum kernel
-> Array n a -> [Int] -- result length: n
vectorExtremumOp ptrconv fextrem array@(Array sh strides _ _)
| null sh = []
| any (<= 0) sh = error "Extremum (minindex/maxindex): empty array"
-- now the input array is nonempty
| all (== 0) strides = 0 <$ sh
-- now there is at least one non-replicated dimension
| otherwise =
simplifyArray array $ \(Array sh' strides' offset' vec') _ upindex _ _ -> unsafePerformIO $ do
let ndims' = length sh'
outvR <- VSM.unsafeNew (length sh')
VSM.unsafeWith outvR $ \poutv ->
VS.unsafeWith (VS.fromListN ndims' (map fromIntegral sh')) $ \psh ->
VS.unsafeWith (VS.fromListN ndims' (map fromIntegral strides')) $ \pstrides ->
VS.unsafeWith vec' $ \pv ->
let pv' = pv `plusPtr` (offset' * sizeOf (undefined :: a))
in fextrem poutv (fromIntegral ndims') psh pstrides (ptrconv pv')
upindex . map (fromIntegral @Int64 @Int) . VS.toList <$> VS.unsafeFreeze outvR
{-# NOINLINE vectorDotprodInnerOp #-}
vectorDotprodInnerOp :: forall a b n. (Num a, Storable a)
=> SNat n
-> (a -> b)
-> (Ptr a -> Ptr b)
-> (SNat n -> Array n a -> Array n a -> Array n a) -- ^ elementwise multiplication
-> (Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ()) -- ^ scale by constant
-> (Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ reduction kernel
-> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ()) -- ^ dotprod kernel
-> Array (n + 1) a -> Array (n + 1) a -> Array n a
vectorDotprodInnerOp sn@SNat valconv ptrconv fmul fscale fred fdotinner
arr1@(Array sh1 strides1 offset1 vec1)
arr2@(Array sh2 strides2 offset2 vec2)
| null sh1 || null sh2 = error "unreachable"
| sh1 /= sh2 = error $ "vectorDotprodInnerOp: shapes unequal: " ++ show sh1 ++ " vs " ++ show sh2
| last sh1 <= 0 = arrayFromConstant (init sh1) 0
| any (<= 0) (init sh1) = Array (init sh1) (0 <$ init strides1) 0 VS.empty
-- now the input arrays are nonempty
| last sh1 == 1 =
fmul sn (Array (init sh1) (init strides1) offset1 vec1)
(Array (init sh2) (init strides2) offset2 vec2)
| last strides1 == 0 =
fmul sn
(Array (init sh1) (init strides1) offset1 vec1)
(vectorRedInnerOp sn valconv ptrconv fscale fred arr2)
| last strides2 == 0 =
fmul sn
(vectorRedInnerOp sn valconv ptrconv fscale fred arr1)
(Array (init sh2) (init strides2) offset2 vec2)
-- now there is useful dotprod work along the inner dimension
| otherwise =
simplifyArray2 arr1 arr2 $ \(Array sh' strides1' offset1' vec1' :: Array n' a) (Array _ strides2' offset2' vec2') _ _ _ restore ->
unsafePerformIO $ do
let inrank = length sh'
outv <- VSM.unsafeNew (product (init sh'))
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith (VS.fromListN inrank (map fromIntegral sh')) $ \psh ->
VS.unsafeWith (VS.fromListN inrank (map fromIntegral strides1')) $ \pstrides1 ->
VS.unsafeWith vec1' $ \pvec1 ->
VS.unsafeWith (VS.fromListN inrank (map fromIntegral strides2')) $ \pstrides2 ->
VS.unsafeWith vec2' $ \pvec2 ->
fdotinner (fromIntegral @Int @Int64 inrank) psh (ptrconv poutv)
pstrides1 (ptrconv pvec1 `plusPtr` (sizeOf (undefined :: a) * offset1'))
pstrides2 (ptrconv pvec2 `plusPtr` (sizeOf (undefined :: a) * offset2'))
TypeNats.withSomeSNat (fromIntegral (inrank - 1)) $ \(SNat :: SNat n'm1) -> do
(Dict :: Dict (1 <= n')) <- case cmpNat (natSing @1) (natSing @n') of
LTI -> pure Dict
EQI -> pure Dict
GTI -> error "impossible" -- because `last strides1 /= 0`
case sameNat (natSing @(n' - 1)) (natSing @n'm1) of
Just Refl -> restore . arrayFromVector (init sh') <$> VS.unsafeFreeze outv
Nothing -> error "impossible"
mulWithInt :: Num a => a -> Int -> a
mulWithInt a i = a * fromIntegral i
$(fmap concat . forM typesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (aboName arithop ++ "Vector" ++ nameBase (atType arithtype))
cnamebase = "c_binary_" ++ atCName arithtype
c_ss_str = varE (aboNumOp arithop)
c_sv_str = varE (mkName (cnamebase ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (aboEnum arithop)))
c_vs_str = varE (mkName (cnamebase ++ "_vs_strided")) `appE` litE (integerL (fromIntegral (aboEnum arithop)))
c_vv_str = varE (mkName (cnamebase ++ "_vv_strided")) `appE` litE (integerL (fromIntegral (aboEnum arithop)))
sequence [SigD name <$>
[t| forall n. SNat n -> Array n $ttyp -> Array n $ttyp -> Array n $ttyp |]
,do body <- [| \sn -> liftOpEltwise2 sn id id $c_ss_str $c_sv_str $c_vs_str $c_vv_str |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM intTypesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (aiboName arithop ++ "Vector" ++ nameBase (atType arithtype))
cnamebase = "c_ibinary_" ++ atCName arithtype
c_ss_str = varE (aiboNumOp arithop)
c_sv_str = varE (mkName (cnamebase ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (aiboEnum arithop)))
c_vs_str = varE (mkName (cnamebase ++ "_vs_strided")) `appE` litE (integerL (fromIntegral (aiboEnum arithop)))
c_vv_str = varE (mkName (cnamebase ++ "_vv_strided")) `appE` litE (integerL (fromIntegral (aiboEnum arithop)))
sequence [SigD name <$>
[t| forall n. SNat n -> Array n $ttyp -> Array n $ttyp -> Array n $ttyp |]
,do body <- [| \sn -> liftOpEltwise2 sn id id $c_ss_str $c_sv_str $c_vs_str $c_vv_str |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM floatTypesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (afboName arithop ++ "Vector" ++ nameBase (atType arithtype))
cnamebase = "c_fbinary_" ++ atCName arithtype
c_ss_str = varE (afboNumOp arithop)
c_sv_str = varE (mkName (cnamebase ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (afboEnum arithop)))
c_vs_str = varE (mkName (cnamebase ++ "_vs_strided")) `appE` litE (integerL (fromIntegral (afboEnum arithop)))
c_vv_str = varE (mkName (cnamebase ++ "_vv_strided")) `appE` litE (integerL (fromIntegral (afboEnum arithop)))
sequence [SigD name <$>
[t| forall n. SNat n -> Array n $ttyp -> Array n $ttyp -> Array n $ttyp |]
,do body <- [| \sn -> liftOpEltwise2 sn id id $c_ss_str $c_sv_str $c_vs_str $c_vv_str |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM typesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (auoName arithop ++ "Vector" ++ nameBase (atType arithtype))
c_op_strided = varE (mkName ("c_unary_" ++ atCName arithtype ++ "_strided")) `appE` litE (integerL (fromIntegral (auoEnum arithop)))
sequence [SigD name <$>
[t| forall n. SNat n -> Array n $ttyp -> Array n $ttyp |]
,do body <- [| \sn -> liftOpEltwise1 sn id $c_op_strided |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM floatTypesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (afuoName arithop ++ "Vector" ++ nameBase (atType arithtype))
c_op_strided = varE (mkName ("c_funary_" ++ atCName arithtype ++ "_strided")) `appE` litE (integerL (fromIntegral (afuoEnum arithop)))
sequence [SigD name <$>
[t| forall n. SNat n -> Array n $ttyp -> Array n $ttyp |]
,do body <- [| \sn -> liftOpEltwise1 sn id $c_op_strided |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM typesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let scaleVar = case arithop of
RO_SUM -> varE 'mulWithInt
RO_PRODUCT -> varE '(^)
let name1 = mkName (aroName arithop ++ "1Vector" ++ nameBase (atType arithtype))
namefull = mkName (aroName arithop ++ "FullVector" ++ nameBase (atType arithtype))
c_op1 = varE (mkName ("c_reduce1_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum arithop)))
c_opfull = varE (mkName ("c_reducefull_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum arithop)))
c_scale_op = varE (mkName ("c_binary_" ++ atCName arithtype ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (aboEnum BO_MUL)))
sequence [SigD name1 <$>
[t| forall n. SNat n -> Array (n + 1) $ttyp -> Array n $ttyp |]
,do body <- [| \sn -> vectorRedInnerOp sn id id $c_scale_op $c_op1 |]
return $ FunD name1 [Clause [] (NormalB body) []]
,SigD namefull <$>
[t| forall n. SNat n -> Array n $ttyp -> $ttyp |]
,do body <- [| \sn -> vectorRedFullOp sn $scaleVar id id $c_opfull |]
return $ FunD namefull [Clause [] (NormalB body) []]
])
$(fmap concat . forM typesList $ \arithtype ->
fmap concat . forM ["min", "max"] $ \fname -> do
let ttyp = conT (atType arithtype)
name = mkName (fname ++ "indexVector" ++ nameBase (atType arithtype))
c_op = varE (mkName ("c_extremum_" ++ fname ++ "_" ++ atCName arithtype))
sequence [SigD name <$>
[t| forall n. Array n $ttyp -> [Int] |]
,do body <- [| vectorExtremumOp id $c_op |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM typesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
name = mkName ("dotprodinnerVector" ++ nameBase (atType arithtype))
c_op = varE (mkName ("c_dotprodinner_" ++ atCName arithtype))
mul_op = varE (mkName ("mulVector" ++ nameBase (atType arithtype)))
c_scale_op = varE (mkName ("c_binary_" ++ atCName arithtype ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (aboEnum BO_MUL)))
c_red_op = varE (mkName ("c_reduce1_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum RO_SUM)))
sequence [SigD name <$>
[t| forall n. SNat n -> Array (n + 1) $ttyp -> Array (n + 1) $ttyp -> Array n $ttyp |]
,do body <- [| \sn -> vectorDotprodInnerOp sn id id $mul_op $c_scale_op $c_red_op $c_op |]
return $ FunD name [Clause [] (NormalB body) []]])
foreign import ccall unsafe "oxarrays_stats_enable" c_stats_enable :: Int32 -> IO ()
foreign import ccall unsafe "oxarrays_stats_print_all" c_stats_print_all :: IO ()
statisticsEnable :: Bool -> IO ()
statisticsEnable b = c_stats_enable (if b then 1 else 0)
-- | Consumes the log: one particular event will only ever be printed once,
-- even if statisticsPrintAll is called multiple times.
statisticsPrintAll :: IO ()
statisticsPrintAll = do
hFlush stdout -- lower the chance of overlapping output
c_stats_print_all
-- This branch is ostensibly a runtime branch, but will (hopefully) be
-- constant-folded away by GHC.
intWidBranch1 :: forall i n. (FiniteBits i, Storable i)
=> (forall b. b ~ Int32 => Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ())
-> (forall b. b ~ Int64 => Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ())
-> (SNat n -> Array n i -> Array n i)
intWidBranch1 f32 f64 sn
| finiteBitSize (undefined :: i) == 32 = liftOpEltwise1 sn castPtr f32
| finiteBitSize (undefined :: i) == 64 = liftOpEltwise1 sn castPtr f64
| otherwise = error "Unsupported Int width"
intWidBranch2 :: forall i n. (FiniteBits i, Storable i, Integral i)
=> (i -> i -> i) -- ss
-- int32
-> (forall b. b ~ Int32 => Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ()) -- sv
-> (forall b. b ~ Int32 => Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> b -> IO ()) -- vs
-> (forall b. b ~ Int32 => Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ()) -- vv
-- int64
-> (forall b. b ~ Int64 => Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ()) -- sv
-> (forall b. b ~ Int64 => Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> b -> IO ()) -- vs
-> (forall b. b ~ Int64 => Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ()) -- vv
-> (SNat n -> Array n i -> Array n i -> Array n i)
intWidBranch2 ss sv32 vs32 vv32 sv64 vs64 vv64 sn
| finiteBitSize (undefined :: i) == 32 = liftOpEltwise2 sn fromIntegral castPtr ss sv32 vs32 vv32
| finiteBitSize (undefined :: i) == 64 = liftOpEltwise2 sn fromIntegral castPtr ss sv64 vs64 vv64
| otherwise = error "Unsupported Int width"
intWidBranchRed1 :: forall i n. (FiniteBits i, Storable i, Integral i)
=> -- int32
(forall b. b ~ Int32 => Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ()) -- ^ scale by constant
-> (forall b. b ~ Int32 => Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ reduction kernel
-- int64
-> (forall b. b ~ Int64 => Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ()) -- ^ scale by constant
-> (forall b. b ~ Int64 => Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ reduction kernel
-> (SNat n -> Array (n + 1) i -> Array n i)
intWidBranchRed1 fsc32 fred32 fsc64 fred64 sn
| finiteBitSize (undefined :: i) == 32 = vectorRedInnerOp @i @Int32 sn fromIntegral castPtr fsc32 fred32
| finiteBitSize (undefined :: i) == 64 = vectorRedInnerOp @i @Int64 sn fromIntegral castPtr fsc64 fred64
| otherwise = error "Unsupported Int width"
intWidBranchRedFull :: forall i n. (FiniteBits i, Storable i, Integral i)
=> (i -> Int -> i) -- ^ scale op
-- int32
-> (forall b. b ~ Int32 => Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO b) -- ^ reduction kernel
-- int64
-> (forall b. b ~ Int64 => Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO b) -- ^ reduction kernel
-> (SNat n -> Array n i -> i)
intWidBranchRedFull fsc fred32 fred64 sn
| finiteBitSize (undefined :: i) == 32 = vectorRedFullOp @i @Int32 sn fsc fromIntegral castPtr fred32
| finiteBitSize (undefined :: i) == 64 = vectorRedFullOp @i @Int64 sn fsc fromIntegral castPtr fred64
| otherwise = error "Unsupported Int width"
intWidBranchExtr :: forall i n. (FiniteBits i, Storable i, Integral i)
=> -- int32
(forall b. b ~ Int32 => Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ extremum kernel
-- int64
-> (forall b. b ~ Int64 => Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ extremum kernel
-> (Array n i -> [Int])
intWidBranchExtr fextr32 fextr64
| finiteBitSize (undefined :: i) == 32 = vectorExtremumOp @i @Int32 castPtr fextr32
| finiteBitSize (undefined :: i) == 64 = vectorExtremumOp @i @Int64 castPtr fextr64
| otherwise = error "Unsupported Int width"
intWidBranchDotprod :: forall i n. (FiniteBits i, Storable i, Integral i, NumElt i)
=> -- int32
(forall b. b ~ Int32 => Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ()) -- ^ scale by constant
-> (forall b. b ~ Int32 => Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ reduction kernel
-> (forall b. b ~ Int32 => Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ()) -- ^ dotprod kernel
-- int64
-> (forall b. b ~ Int64 => Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ()) -- ^ scale by constant
-> (forall b. b ~ Int64 => Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ reduction kernel
-> (forall b. b ~ Int64 => Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ()) -- ^ dotprod kernel
-> (SNat n -> Array (n + 1) i -> Array (n + 1) i -> Array n i)
intWidBranchDotprod fsc32 fred32 fdot32 fsc64 fred64 fdot64 sn
| finiteBitSize (undefined :: i) == 32 = vectorDotprodInnerOp @i @Int32 sn fromIntegral castPtr numEltMul fsc32 fred32 fdot32
| finiteBitSize (undefined :: i) == 64 = vectorDotprodInnerOp @i @Int64 sn fromIntegral castPtr numEltMul fsc64 fred64 fdot64
| otherwise = error "Unsupported Int width"
class NumElt a where
numEltAdd :: SNat n -> Array n a -> Array n a -> Array n a
numEltSub :: SNat n -> Array n a -> Array n a -> Array n a
numEltMul :: SNat n -> Array n a -> Array n a -> Array n a
numEltNeg :: SNat n -> Array n a -> Array n a
numEltAbs :: SNat n -> Array n a -> Array n a
numEltSignum :: SNat n -> Array n a -> Array n a
numEltSum1Inner :: SNat n -> Array (n + 1) a -> Array n a
numEltProduct1Inner :: SNat n -> Array (n + 1) a -> Array n a
numEltSumFull :: SNat n -> Array n a -> a
numEltProductFull :: SNat n -> Array n a -> a
numEltMinIndex :: SNat n -> Array n a -> [Int]
numEltMaxIndex :: SNat n -> Array n a -> [Int]
numEltDotprodInner :: SNat n -> Array (n + 1) a -> Array (n + 1) a -> Array n a
instance NumElt Int32 where
numEltAdd = addVectorInt32
numEltSub = subVectorInt32
numEltMul = mulVectorInt32
numEltNeg = negVectorInt32
numEltAbs = absVectorInt32
numEltSignum = signumVectorInt32
numEltSum1Inner = sum1VectorInt32
numEltProduct1Inner = product1VectorInt32
numEltSumFull = sumFullVectorInt32
numEltProductFull = productFullVectorInt32
numEltMinIndex _ = minindexVectorInt32
numEltMaxIndex _ = maxindexVectorInt32
numEltDotprodInner = dotprodinnerVectorInt32
instance NumElt Int64 where
numEltAdd = addVectorInt64
numEltSub = subVectorInt64
numEltMul = mulVectorInt64
numEltNeg = negVectorInt64
numEltAbs = absVectorInt64
numEltSignum = signumVectorInt64
numEltSum1Inner = sum1VectorInt64
numEltProduct1Inner = product1VectorInt64
numEltSumFull = sumFullVectorInt64
numEltProductFull = productFullVectorInt64
numEltMinIndex _ = minindexVectorInt64
numEltMaxIndex _ = maxindexVectorInt64
numEltDotprodInner = dotprodinnerVectorInt64
instance NumElt Float where
numEltAdd = addVectorFloat
numEltSub = subVectorFloat
numEltMul = mulVectorFloat
numEltNeg = negVectorFloat
numEltAbs = absVectorFloat
numEltSignum = signumVectorFloat
numEltSum1Inner = sum1VectorFloat
numEltProduct1Inner = product1VectorFloat
numEltSumFull = sumFullVectorFloat
numEltProductFull = productFullVectorFloat
numEltMinIndex _ = minindexVectorFloat
numEltMaxIndex _ = maxindexVectorFloat
numEltDotprodInner = dotprodinnerVectorFloat
instance NumElt Double where
numEltAdd = addVectorDouble
numEltSub = subVectorDouble
numEltMul = mulVectorDouble
numEltNeg = negVectorDouble
numEltAbs = absVectorDouble
numEltSignum = signumVectorDouble
numEltSum1Inner = sum1VectorDouble
numEltProduct1Inner = product1VectorDouble
numEltSumFull = sumFullVectorDouble
numEltProductFull = productFullVectorDouble
numEltMinIndex _ = minindexVectorDouble
numEltMaxIndex _ = maxindexVectorDouble
numEltDotprodInner = dotprodinnerVectorDouble
instance NumElt Int where
numEltAdd = intWidBranch2 @Int (+)
(c_binary_i32_sv_strided (aboEnum BO_ADD)) (c_binary_i32_vs_strided (aboEnum BO_ADD)) (c_binary_i32_vv_strided (aboEnum BO_ADD))
(c_binary_i64_sv_strided (aboEnum BO_ADD)) (c_binary_i64_vs_strided (aboEnum BO_ADD)) (c_binary_i64_vv_strided (aboEnum BO_ADD))
numEltSub = intWidBranch2 @Int (-)
(c_binary_i32_sv_strided (aboEnum BO_SUB)) (c_binary_i32_vs_strided (aboEnum BO_SUB)) (c_binary_i32_vv_strided (aboEnum BO_SUB))
(c_binary_i64_sv_strided (aboEnum BO_SUB)) (c_binary_i64_vs_strided (aboEnum BO_SUB)) (c_binary_i64_vv_strided (aboEnum BO_SUB))
numEltMul = intWidBranch2 @Int (*)
(c_binary_i32_sv_strided (aboEnum BO_MUL)) (c_binary_i32_vs_strided (aboEnum BO_MUL)) (c_binary_i32_vv_strided (aboEnum BO_MUL))
(c_binary_i64_sv_strided (aboEnum BO_MUL)) (c_binary_i64_vs_strided (aboEnum BO_MUL)) (c_binary_i64_vv_strided (aboEnum BO_MUL))
numEltNeg = intWidBranch1 @Int (c_unary_i32_strided (auoEnum UO_NEG)) (c_unary_i64_strided (auoEnum UO_NEG))
numEltAbs = intWidBranch1 @Int (c_unary_i32_strided (auoEnum UO_ABS)) (c_unary_i64_strided (auoEnum UO_ABS))
numEltSignum = intWidBranch1 @Int (c_unary_i32_strided (auoEnum UO_SIGNUM)) (c_unary_i64_strided (auoEnum UO_SIGNUM))
numEltSum1Inner = intWidBranchRed1 @Int
(c_binary_i32_sv_strided (aboEnum BO_MUL)) (c_reduce1_i32 (aroEnum RO_SUM))
(c_binary_i64_sv_strided (aboEnum BO_MUL)) (c_reduce1_i64 (aroEnum RO_SUM))
numEltProduct1Inner = intWidBranchRed1 @Int
(c_binary_i32_sv_strided (aboEnum BO_MUL)) (c_reduce1_i32 (aroEnum RO_PRODUCT))
(c_binary_i64_sv_strided (aboEnum BO_MUL)) (c_reduce1_i64 (aroEnum RO_PRODUCT))
numEltSumFull = intWidBranchRedFull @Int (*) (c_reducefull_i32 (aroEnum RO_SUM)) (c_reducefull_i64 (aroEnum RO_SUM))
numEltProductFull = intWidBranchRedFull @Int (^) (c_reducefull_i32 (aroEnum RO_PRODUCT)) (c_reducefull_i64 (aroEnum RO_PRODUCT))
numEltMinIndex _ = intWidBranchExtr @Int c_extremum_min_i32 c_extremum_min_i64
numEltMaxIndex _ = intWidBranchExtr @Int c_extremum_max_i32 c_extremum_max_i64
numEltDotprodInner = intWidBranchDotprod @Int (c_binary_i32_sv_strided (aboEnum BO_MUL)) (c_reduce1_i32 (aroEnum RO_SUM)) c_dotprodinner_i32
(c_binary_i64_sv_strided (aboEnum BO_MUL)) (c_reduce1_i64 (aroEnum RO_SUM)) c_dotprodinner_i64
instance NumElt CInt where
numEltAdd = intWidBranch2 @CInt (+)
(c_binary_i32_sv_strided (aboEnum BO_ADD)) (c_binary_i32_vs_strided (aboEnum BO_ADD)) (c_binary_i32_vv_strided (aboEnum BO_ADD))
(c_binary_i64_sv_strided (aboEnum BO_ADD)) (c_binary_i64_vs_strided (aboEnum BO_ADD)) (c_binary_i64_vv_strided (aboEnum BO_ADD))
numEltSub = intWidBranch2 @CInt (-)
(c_binary_i32_sv_strided (aboEnum BO_SUB)) (c_binary_i32_vs_strided (aboEnum BO_SUB)) (c_binary_i32_vv_strided (aboEnum BO_SUB))
(c_binary_i64_sv_strided (aboEnum BO_SUB)) (c_binary_i64_vs_strided (aboEnum BO_SUB)) (c_binary_i64_vv_strided (aboEnum BO_SUB))
numEltMul = intWidBranch2 @CInt (*)
(c_binary_i32_sv_strided (aboEnum BO_MUL)) (c_binary_i32_vs_strided (aboEnum BO_MUL)) (c_binary_i32_vv_strided (aboEnum BO_MUL))
(c_binary_i64_sv_strided (aboEnum BO_MUL)) (c_binary_i64_vs_strided (aboEnum BO_MUL)) (c_binary_i64_vv_strided (aboEnum BO_MUL))
numEltNeg = intWidBranch1 @CInt (c_unary_i32_strided (auoEnum UO_NEG)) (c_unary_i64_strided (auoEnum UO_NEG))
numEltAbs = intWidBranch1 @CInt (c_unary_i32_strided (auoEnum UO_ABS)) (c_unary_i64_strided (auoEnum UO_ABS))
numEltSignum = intWidBranch1 @CInt (c_unary_i32_strided (auoEnum UO_SIGNUM)) (c_unary_i64_strided (auoEnum UO_SIGNUM))
numEltSum1Inner = intWidBranchRed1 @CInt
(c_binary_i32_sv_strided (aboEnum BO_MUL)) (c_reduce1_i32 (aroEnum RO_SUM))
(c_binary_i64_sv_strided (aboEnum BO_MUL)) (c_reduce1_i64 (aroEnum RO_SUM))
numEltProduct1Inner = intWidBranchRed1 @CInt
(c_binary_i32_sv_strided (aboEnum BO_MUL)) (c_reduce1_i32 (aroEnum RO_PRODUCT))
(c_binary_i64_sv_strided (aboEnum BO_MUL)) (c_reduce1_i64 (aroEnum RO_PRODUCT))
numEltSumFull = intWidBranchRedFull @CInt mulWithInt (c_reducefull_i32 (aroEnum RO_SUM)) (c_reducefull_i64 (aroEnum RO_SUM))
numEltProductFull = intWidBranchRedFull @CInt (^) (c_reducefull_i32 (aroEnum RO_PRODUCT)) (c_reducefull_i64 (aroEnum RO_PRODUCT))
numEltMinIndex _ = intWidBranchExtr @CInt c_extremum_min_i32 c_extremum_min_i64
numEltMaxIndex _ = intWidBranchExtr @CInt c_extremum_max_i32 c_extremum_max_i64
numEltDotprodInner = intWidBranchDotprod @CInt (c_binary_i32_sv_strided (aboEnum BO_MUL)) (c_reduce1_i32 (aroEnum RO_SUM)) c_dotprodinner_i32
(c_binary_i64_sv_strided (aboEnum BO_MUL)) (c_reduce1_i64 (aroEnum RO_SUM)) c_dotprodinner_i64
class NumElt a => IntElt a where
intEltQuot :: SNat n -> Array n a -> Array n a -> Array n a
intEltRem :: SNat n -> Array n a -> Array n a -> Array n a
instance IntElt Int32 where
intEltQuot = quotVectorInt32
intEltRem = remVectorInt32
instance IntElt Int64 where
intEltQuot = quotVectorInt64
intEltRem = remVectorInt64
instance IntElt Int where
intEltQuot = intWidBranch2 @Int quot
(c_binary_i32_sv_strided (aiboEnum IB_QUOT)) (c_binary_i32_vs_strided (aiboEnum IB_QUOT)) (c_binary_i32_vv_strided (aiboEnum IB_QUOT))
(c_binary_i64_sv_strided (aiboEnum IB_QUOT)) (c_binary_i64_vs_strided (aiboEnum IB_QUOT)) (c_binary_i64_vv_strided (aiboEnum IB_QUOT))
intEltRem = intWidBranch2 @Int rem
(c_binary_i32_sv_strided (aiboEnum IB_REM)) (c_binary_i32_vs_strided (aiboEnum IB_REM)) (c_binary_i32_vv_strided (aiboEnum IB_REM))
(c_binary_i64_sv_strided (aiboEnum IB_REM)) (c_binary_i64_vs_strided (aiboEnum IB_REM)) (c_binary_i64_vv_strided (aiboEnum IB_REM))
instance IntElt CInt where
intEltQuot = intWidBranch2 @CInt quot
(c_binary_i32_sv_strided (aiboEnum IB_QUOT)) (c_binary_i32_vs_strided (aiboEnum IB_QUOT)) (c_binary_i32_vv_strided (aiboEnum IB_QUOT))
(c_binary_i64_sv_strided (aiboEnum IB_QUOT)) (c_binary_i64_vs_strided (aiboEnum IB_QUOT)) (c_binary_i64_vv_strided (aiboEnum IB_QUOT))
intEltRem = intWidBranch2 @CInt rem
(c_binary_i32_sv_strided (aiboEnum IB_REM)) (c_binary_i32_vs_strided (aiboEnum IB_REM)) (c_binary_i32_vv_strided (aiboEnum IB_REM))
(c_binary_i64_sv_strided (aiboEnum IB_REM)) (c_binary_i64_vs_strided (aiboEnum IB_REM)) (c_binary_i64_vv_strided (aiboEnum IB_REM))
class NumElt a => FloatElt a where
floatEltDiv :: SNat n -> Array n a -> Array n a -> Array n a
floatEltPow :: SNat n -> Array n a -> Array n a -> Array n a
floatEltLogbase :: SNat n -> Array n a -> Array n a -> Array n a
floatEltRecip :: SNat n -> Array n a -> Array n a
floatEltExp :: SNat n -> Array n a -> Array n a
floatEltLog :: SNat n -> Array n a -> Array n a
floatEltSqrt :: SNat n -> Array n a -> Array n a
floatEltSin :: SNat n -> Array n a -> Array n a
floatEltCos :: SNat n -> Array n a -> Array n a
floatEltTan :: SNat n -> Array n a -> Array n a
floatEltAsin :: SNat n -> Array n a -> Array n a
floatEltAcos :: SNat n -> Array n a -> Array n a
floatEltAtan :: SNat n -> Array n a -> Array n a
floatEltSinh :: SNat n -> Array n a -> Array n a
floatEltCosh :: SNat n -> Array n a -> Array n a
floatEltTanh :: SNat n -> Array n a -> Array n a
floatEltAsinh :: SNat n -> Array n a -> Array n a
floatEltAcosh :: SNat n -> Array n a -> Array n a
floatEltAtanh :: SNat n -> Array n a -> Array n a
floatEltLog1p :: SNat n -> Array n a -> Array n a
floatEltExpm1 :: SNat n -> Array n a -> Array n a
floatEltLog1pexp :: SNat n -> Array n a -> Array n a
floatEltLog1mexp :: SNat n -> Array n a -> Array n a
floatEltAtan2 :: SNat n -> Array n a -> Array n a -> Array n a
instance FloatElt Float where
floatEltDiv = divVectorFloat
floatEltPow = powVectorFloat
floatEltLogbase = logbaseVectorFloat
floatEltRecip = recipVectorFloat
floatEltExp = expVectorFloat
floatEltLog = logVectorFloat
floatEltSqrt = sqrtVectorFloat
floatEltSin = sinVectorFloat
floatEltCos = cosVectorFloat
floatEltTan = tanVectorFloat
floatEltAsin = asinVectorFloat
floatEltAcos = acosVectorFloat
floatEltAtan = atanVectorFloat
floatEltSinh = sinhVectorFloat
floatEltCosh = coshVectorFloat
floatEltTanh = tanhVectorFloat
floatEltAsinh = asinhVectorFloat
floatEltAcosh = acoshVectorFloat
floatEltAtanh = atanhVectorFloat
floatEltLog1p = log1pVectorFloat
floatEltExpm1 = expm1VectorFloat
floatEltLog1pexp = log1pexpVectorFloat
floatEltLog1mexp = log1mexpVectorFloat
floatEltAtan2 = atan2VectorFloat
instance FloatElt Double where
floatEltDiv = divVectorDouble
floatEltPow = powVectorDouble
floatEltLogbase = logbaseVectorDouble
floatEltRecip = recipVectorDouble
floatEltExp = expVectorDouble
floatEltLog = logVectorDouble
floatEltSqrt = sqrtVectorDouble
floatEltSin = sinVectorDouble
floatEltCos = cosVectorDouble
floatEltTan = tanVectorDouble
floatEltAsin = asinVectorDouble
floatEltAcos = acosVectorDouble
floatEltAtan = atanVectorDouble
floatEltSinh = sinhVectorDouble
floatEltCosh = coshVectorDouble
floatEltTanh = tanhVectorDouble
floatEltAsinh = asinhVectorDouble
floatEltAcosh = acoshVectorDouble
floatEltAtanh = atanhVectorDouble
floatEltLog1p = log1pVectorDouble
floatEltExpm1 = expm1VectorDouble
floatEltLog1pexp = log1pexpVectorDouble
floatEltLog1mexp = log1mexpVectorDouble
floatEltAtan2 = atan2VectorDouble
|