aboutsummaryrefslogtreecommitdiff
path: root/src/Data/Array/Mixed.hs
blob: 080c458e4bd5634e4558b45f23a788eec14a3b72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE NoStarIsType #-}
{-# LANGUAGE StrictData #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
module Data.Array.Mixed where

import Control.DeepSeq (NFData(..))
import qualified Data.Array.RankedS as S
import qualified Data.Array.Ranked as ORB
import Data.Bifunctor (first)
import Data.Coerce
import qualified Data.Foldable as Foldable
import Data.Functor.Const
import Data.Kind
import Data.Monoid (Sum(..))
import Data.Proxy
import Data.Type.Bool
import Data.Type.Equality
import qualified Data.Vector.Storable as VS
import Foreign.Storable (Storable)
import GHC.Generics (Generic)
import GHC.IsList (IsList)
import qualified GHC.IsList as IsList
import GHC.TypeError
import GHC.TypeLits
import qualified GHC.TypeNats as TypeNats
import Unsafe.Coerce (unsafeCoerce)

import Data.Array.Nested.Internal.Arith


-- | Evidence for the constraint @c a@.
data Dict c a where
  Dict :: c a => Dict c a

fromSNat' :: SNat n -> Int
fromSNat' = fromIntegral . fromSNat

pattern SZ :: () => (n ~ 0) => SNat n
pattern SZ <- ((\sn -> testEquality sn (SNat @0)) -> Just Refl)
  where SZ = SNat

pattern SS :: forall np1. () => forall n. (n + 1 ~ np1) => SNat n -> SNat np1
pattern SS sn <- (snatPred -> Just (SNatPredResult sn Refl))
  where SS = snatSucc

{-# COMPLETE SZ, SS #-}

snatSucc :: SNat n -> SNat (n + 1)
snatSucc SNat = SNat

data SNatPredResult np1 = forall n. SNatPredResult (SNat n) (n + 1 :~: np1)
snatPred :: forall np1. SNat np1 -> Maybe (SNatPredResult np1)
snatPred snp1 =
  withKnownNat snp1 $
    case cmpNat (Proxy @1) (Proxy @np1) of
      LTI -> Just (SNatPredResult (SNat @(np1 - 1)) Refl)
      EQI -> Just (SNatPredResult (SNat @(np1 - 1)) Refl)
      GTI -> Nothing


-- | Type-level list append.
type family l1 ++ l2 where
  '[] ++ l2 = l2
  (x : xs) ++ l2 = x : xs ++ l2

lemAppNil :: l ++ '[] :~: l
lemAppNil = unsafeCoerce Refl

lemAppAssoc :: Proxy a -> Proxy b -> Proxy c -> (a ++ b) ++ c :~: a ++ (b ++ c)
lemAppAssoc _ _ _ = unsafeCoerce Refl

type family Replicate n a where
  Replicate 0 a = '[]
  Replicate n a = a : Replicate (n - 1) a


type role ListX nominal representational
type ListX :: [Maybe Nat] -> (Maybe Nat -> Type) -> Type
data ListX sh f where
  ZX :: ListX '[] f
  (::%) :: f n -> ListX sh f -> ListX (n : sh) f
deriving instance (forall n. Eq (f n)) => Eq (ListX sh f)
deriving instance (forall n. Ord (f n)) => Ord (ListX sh f)
infixr 3 ::%

instance (forall n. Show (f n)) => Show (ListX sh f) where
  showsPrec _ = showListX shows

instance (forall n. NFData (f n)) => NFData (ListX sh f) where
  rnf ZX = ()
  rnf (x ::% l) = rnf x `seq` rnf l

data UnconsListXRes f sh1 =
  forall n sh. (n : sh ~ sh1) => UnconsListXRes (ListX sh f) (f n)
unconsListX :: ListX sh1 f -> Maybe (UnconsListXRes f sh1)
unconsListX (i ::% shl') = Just (UnconsListXRes shl' i)
unconsListX ZX = Nothing

fmapListX :: (forall n. f n -> g n) -> ListX sh f -> ListX sh g
fmapListX _ ZX = ZX
fmapListX f (x ::% xs) = f x ::% fmapListX f xs

foldListX :: Monoid m => (forall n. f n -> m) -> ListX sh f -> m
foldListX _ ZX = mempty
foldListX f (x ::% xs) = f x <> foldListX f xs

lengthListX :: ListX sh f -> Int
lengthListX = getSum . foldListX (\_ -> Sum 1)

snatLengthListX :: ListX sh f -> SNat (Rank sh)
snatLengthListX ZX = SNat
snatLengthListX (_ ::% l) | SNat <- snatLengthListX l = SNat

showListX :: forall sh f. (forall n. f n -> ShowS) -> ListX sh f -> ShowS
showListX f l = showString "[" . go "" l . showString "]"
  where
    go :: String -> ListX sh' f -> ShowS
    go _ ZX = id
    go prefix (x ::% xs) = showString prefix . f x . go "," xs

listXToList :: ListX sh' (Const i) -> [i]
listXToList ZX = []
listXToList (Const i ::% is) = i : listXToList is


type role IxX nominal representational
type IxX :: [Maybe Nat] -> Type -> Type
newtype IxX sh i = IxX (ListX sh (Const i))
  deriving (Eq, Ord, Generic)

pattern ZIX :: forall sh i. () => sh ~ '[] => IxX sh i
pattern ZIX = IxX ZX

pattern (:.%)
  :: forall {sh1} {i}.
     forall n sh. (n : sh ~ sh1)
  => i -> IxX sh i -> IxX sh1 i
pattern i :.% shl <- IxX (unconsListX -> Just (UnconsListXRes (IxX -> shl) (getConst -> i)))
  where i :.% IxX shl = IxX (Const i ::% shl)
infixr 3 :.%

{-# COMPLETE ZIX, (:.%) #-}

type IIxX sh = IxX sh Int

instance Show i => Show (IxX sh i) where
  showsPrec _ (IxX l) = showListX (\(Const i) -> shows i) l

instance Functor (IxX sh) where
  fmap f (IxX l) = IxX (fmapListX (Const . f . getConst) l)

instance Foldable (IxX sh) where
  foldMap f (IxX l) = foldListX (f . getConst) l

instance NFData i => NFData (IxX sh i)


data SMayNat i f n where
  SUnknown :: i -> SMayNat i f Nothing
  SKnown :: f n -> SMayNat i f (Just n)
deriving instance (Show i, forall m. Show (f m)) => Show (SMayNat i f n)
deriving instance (Eq i, forall m. Eq (f m)) => Eq (SMayNat i f n)
deriving instance (Ord i, forall m. Ord (f m)) => Ord (SMayNat i f n)

instance (NFData i, forall m. NFData (f m)) => NFData (SMayNat i f n) where
  rnf (SUnknown i) = rnf i
  rnf (SKnown x) = rnf x

fromSMayNat :: (n ~ Nothing => i -> r) -> (forall m. n ~ Just m => f m -> r) -> SMayNat i f n -> r
fromSMayNat f _ (SUnknown i) = f i
fromSMayNat _ g (SKnown s) = g s

fromSMayNat' :: SMayNat Int SNat n -> Int
fromSMayNat' = fromSMayNat id fromSNat'

type role ShX nominal representational
type ShX :: [Maybe Nat] -> Type -> Type
newtype ShX sh i = ShX (ListX sh (SMayNat i SNat))
  deriving (Eq, Ord, Generic)

pattern ZSX :: forall sh i. () => sh ~ '[] => ShX sh i
pattern ZSX = ShX ZX

pattern (:$%)
  :: forall {sh1} {i}.
     forall n sh. (n : sh ~ sh1)
  => SMayNat i SNat n -> ShX sh i -> ShX sh1 i
pattern i :$% shl <- ShX (unconsListX -> Just (UnconsListXRes (ShX -> shl) i))
  where i :$% ShX shl = ShX (i ::% shl)
infixr 3 :$%

{-# COMPLETE ZSX, (:$%) #-}

type IShX sh = ShX sh Int

instance Show i => Show (ShX sh i) where
  showsPrec _ (ShX l) = showListX (fromSMayNat shows (shows . fromSNat)) l

instance Functor (ShX sh) where
  fmap f (ShX l) = ShX (fmapListX (fromSMayNat (SUnknown . f) SKnown) l)

instance NFData i => NFData (ShX sh i) where
  rnf (ShX ZX) = ()
  rnf (ShX (SUnknown i ::% l)) = rnf i `seq` rnf (ShX l)
  rnf (ShX (SKnown SNat ::% l)) = rnf (ShX l)

lengthShX :: ShX sh i -> Int
lengthShX (ShX l) = lengthListX l

shXToList :: IShX sh -> [Int]
shXToList ZSX = []
shXToList (smn :$% sh) = fromSMayNat' smn : shXToList sh


-- | The part of a shape that is statically known.
type StaticShX :: [Maybe Nat] -> Type
newtype StaticShX sh = StaticShX (ListX sh (SMayNat () SNat))
  deriving (Eq, Ord)

pattern ZKX :: forall sh. () => sh ~ '[] => StaticShX sh
pattern ZKX = StaticShX ZX

pattern (:!%)
  :: forall {sh1}.
     forall n sh. (n : sh ~ sh1)
  => SMayNat () SNat n -> StaticShX sh -> StaticShX sh1
pattern i :!% shl <- StaticShX (unconsListX -> Just (UnconsListXRes (StaticShX -> shl) i))
  where i :!% StaticShX shl = StaticShX (i ::% shl)
infixr 3 :!%

{-# COMPLETE ZKX, (:!%) #-}

instance Show (StaticShX sh) where
  showsPrec _ (StaticShX l) = showListX (fromSMayNat shows (shows . fromSNat)) l

lengthStaticShX :: StaticShX sh -> Int
lengthStaticShX (StaticShX l) = lengthListX l


-- | Evidence for the static part of a shape. This pops up only when you are
-- polymorphic in the element type of an array.
type KnownShX :: [Maybe Nat] -> Constraint
class KnownShX sh where knownShX :: StaticShX sh
instance KnownShX '[] where knownShX = ZKX
instance (KnownNat n, KnownShX sh) => KnownShX (Just n : sh) where knownShX = SKnown natSing :!% knownShX
instance KnownShX sh => KnownShX (Nothing : sh) where knownShX = SUnknown () :!% knownShX


-- | Very untyped: only length is checked (at runtime).
instance KnownShX sh => IsList (ListX sh (Const i)) where
  type Item (ListX sh (Const i)) = i
  fromList topl = go (knownShX @sh) topl
    where
      go :: StaticShX sh' -> [i] -> ListX sh' (Const i)
      go ZKX [] = ZX
      go (_ :!% sh) (i : is) = Const i ::% go sh is
      go _ _ = error $ "IsList(ListX): Mismatched list length (type says "
                         ++ show (lengthStaticShX (knownShX @sh)) ++ ", list has length "
                         ++ show (length topl) ++ ")"
  toList = listXToList

-- | Very untyped: only length is checked (at runtime), index bounds are __not checked__.
instance KnownShX sh => IsList (IxX sh i) where
  type Item (IxX sh i) = i
  fromList = IxX . IsList.fromList
  toList = Foldable.toList

-- | Untyped: length and known dimensions are checked (at runtime).
instance KnownShX sh => IsList (ShX sh Int) where
  type Item (ShX sh Int) = Int
  fromList topl = ShX (go (knownShX @sh) topl)
    where
      go :: StaticShX sh' -> [Int] -> ListX sh' (SMayNat Int SNat)
      go ZKX [] = ZX
      go (SKnown sn :!% sh) (i : is)
        | i == fromSNat' sn = SKnown sn ::% go sh is
        | otherwise = error $ "IsList(ShX): Value does not match typing (type says "
                                ++ show (fromSNat' sn) ++ ", list contains " ++ show i ++ ")"
      go (SUnknown () :!% sh) (i : is) = SUnknown i ::% go sh is
      go _ _ = error $ "IsList(ShX): Mismatched list length (type says "
                         ++ show (lengthStaticShX (knownShX @sh)) ++ ", list has length "
                         ++ show (length topl) ++ ")"
  toList = shXToList


type family Rank sh where
  Rank '[] = 0
  Rank (_ : sh) = Rank sh + 1

type XArray :: [Maybe Nat] -> Type -> Type
newtype XArray sh a = XArray (S.Array (Rank sh) a)
  deriving (Show, Eq, Generic)

-- | Only on scalars, because lexicographical ordering is strange on multi-dimensional arrays.
deriving instance (Ord a, Storable a) => Ord (XArray '[] a)

instance NFData a => NFData (XArray sh a)

zeroIxX :: StaticShX sh -> IIxX sh
zeroIxX ZKX = ZIX
zeroIxX (_ :!% ssh) = 0 :.% zeroIxX ssh

zeroIxX' :: IShX sh -> IIxX sh
zeroIxX' ZSX = ZIX
zeroIxX' (_ :$% sh) = 0 :.% zeroIxX' sh

-- This is a weird operation, so it has a long name
completeShXzeros :: StaticShX sh -> IShX sh
completeShXzeros ZKX = ZSX
completeShXzeros (SUnknown () :!% ssh) = SUnknown 0 :$% completeShXzeros ssh
completeShXzeros (SKnown n :!% ssh) = SKnown n :$% completeShXzeros ssh

listxAppend :: ListX sh f -> ListX sh' f -> ListX (sh ++ sh') f
listxAppend ZX idx' = idx'
listxAppend (i ::% idx) idx' = i ::% listxAppend idx idx'

ixAppend :: forall sh sh' i. IxX sh i -> IxX sh' i -> IxX (sh ++ sh') i
ixAppend = coerce (listxAppend @_ @(Const i))

shAppend :: forall sh sh' i. ShX sh i -> ShX sh' i -> ShX (sh ++ sh') i
shAppend = coerce (listxAppend @_ @(SMayNat i SNat))

listxDrop :: forall f g sh sh'. ListX (sh ++ sh') f -> ListX sh g -> ListX sh' f
listxDrop long ZX = long
listxDrop long (_ ::% short) = case long of _ ::% long' -> listxDrop long' short

ixDrop :: forall sh sh' i. IxX (sh ++ sh') i -> IxX sh i -> IxX sh' i
ixDrop = coerce (listxDrop @(Const i) @(Const i))

shDropSSX :: forall sh sh' i. ShX (sh ++ sh') i -> StaticShX sh -> ShX sh' i
shDropSSX = coerce (listxDrop @(SMayNat i SNat) @(SMayNat () SNat))

shDropIx :: forall sh sh' i j. ShX (sh ++ sh') i -> IxX sh j -> ShX sh' i
shDropIx = coerce (listxDrop @(SMayNat i SNat) @(Const j))

shDropSh :: forall sh sh' i. ShX (sh ++ sh') i -> ShX sh i -> ShX sh' i
shDropSh = coerce (listxDrop @(SMayNat i SNat) @(SMayNat i SNat))

shTakeSSX :: forall sh sh' i. Proxy sh' -> ShX (sh ++ sh') i -> StaticShX sh -> ShX sh i
shTakeSSX _ = flip go
  where
    go :: StaticShX sh1 -> ShX (sh1 ++ sh') i -> ShX sh1 i
    go ZKX _ = ZSX
    go (_ :!% ssh1) (n :$% sh) = n :$% go ssh1 sh

ssxDropIx :: forall sh sh' i. StaticShX (sh ++ sh') -> IxX sh i -> StaticShX sh'
ssxDropIx = coerce (listxDrop @(SMayNat () SNat) @(Const i))

-- TODO: generalise all these things to arbitrary @i@
shTail :: IShX (n : sh) -> IShX sh
shTail (_ :$% sh) = sh

ssxTail :: StaticShX (n : sh) -> StaticShX sh
ssxTail (_ :!% ssh) = ssh

shAppSplit :: Proxy sh' -> StaticShX sh -> IShX (sh ++ sh') -> (IShX sh, IShX sh')
shAppSplit _ ZKX idx = (ZSX, idx)
shAppSplit p (_ :!% ssh) (i :$% idx) = first (i :$%) (shAppSplit p ssh idx)

ssxAppend :: StaticShX sh -> StaticShX sh' -> StaticShX (sh ++ sh')
ssxAppend ZKX sh' = sh'
ssxAppend (n :!% sh) sh' = n :!% ssxAppend sh sh'

shapeSize :: IShX sh -> Int
shapeSize ZSX = 1
shapeSize (n :$% sh) = fromSMayNat' n * shapeSize sh

-- | This may fail if @sh@ has @Nothing@s in it.
ssxToShape' :: StaticShX sh -> Maybe (IShX sh)
ssxToShape' ZKX = Just ZSX
ssxToShape' (SKnown n :!% sh) = (SKnown n :$%) <$> ssxToShape' sh
ssxToShape' (SUnknown _ :!% _) = Nothing

lemReplicateSucc :: (a : Replicate n a) :~: Replicate (n + 1) a
lemReplicateSucc = unsafeCoerce Refl

ssxReplicate :: SNat n -> StaticShX (Replicate n Nothing)
ssxReplicate SZ = ZKX
ssxReplicate (SS (n :: SNat n'))
  | Refl <- lemReplicateSucc @(Nothing @Nat) @n'
  = SUnknown () :!% ssxReplicate n

fromLinearIdx :: IShX sh -> Int -> IIxX sh
fromLinearIdx = \sh i -> case go sh i of
  (idx, 0) -> idx
  _ -> error $ "fromLinearIdx: out of range (" ++ show i ++
               " in array of shape " ++ show sh ++ ")"
  where
    -- returns (index in subarray, remaining index in enclosing array)
    go :: IShX sh -> Int -> (IIxX sh, Int)
    go ZSX i = (ZIX, i)
    go (n :$% sh) i =
      let (idx, i') = go sh i
          (upi, locali) = i' `quotRem` fromSMayNat' n
      in (locali :.% idx, upi)

toLinearIdx :: IShX sh -> IIxX sh -> Int
toLinearIdx = \sh i -> fst (go sh i)
  where
    -- returns (index in subarray, size of subarray)
    go :: IShX sh -> IIxX sh -> (Int, Int)
    go ZSX ZIX = (0, 1)
    go (n :$% sh) (i :.% ix) =
      let (lidx, sz) = go sh ix
      in (sz * i + lidx, fromSMayNat' n * sz)

enumShape :: IShX sh -> [IIxX sh]
enumShape = \sh -> go sh id []
  where
    go :: IShX sh -> (IIxX sh -> a) -> [a] -> [a]
    go ZSX f = (f ZIX :)
    go (n :$% sh) f = foldr (.) id [go sh (f . (i :.%)) | i <- [0 .. fromSMayNat' n - 1]]

shapeLshape :: IShX sh -> S.ShapeL
shapeLshape ZSX = []
shapeLshape (n :$% sh) = fromSMayNat' n : shapeLshape sh

ssxLength :: StaticShX sh -> Int
ssxLength ZKX = 0
ssxLength (_ :!% ssh) = 1 + ssxLength ssh

ssxIotaFrom :: Int -> StaticShX sh -> [Int]
ssxIotaFrom _ ZKX = []
ssxIotaFrom i (_ :!% ssh) = i : ssxIotaFrom (i+1) ssh

type Flatten sh = Flatten' 1 sh

type family Flatten' acc sh where
  Flatten' acc '[] = Just acc
  Flatten' acc (Nothing : sh) = Nothing
  Flatten' acc (Just n : sh) = Flatten' (acc * n) sh

flattenSSX :: StaticShX sh -> SMayNat () SNat (Flatten sh)
flattenSSX = go (SNat @1)
  where
    go :: SNat acc -> StaticShX sh -> SMayNat () SNat (Flatten' acc sh)
    go acc ZKX = SKnown acc
    go _ (SUnknown () :!% _) = SUnknown ()
    go acc (SKnown sn :!% sh) = go (mulSNat acc sn) sh

flattenSh :: IShX sh -> SMayNat Int SNat (Flatten sh)
flattenSh = go (SNat @1)
  where
    go :: SNat acc -> IShX sh -> SMayNat Int SNat (Flatten' acc sh)
    go acc ZSX = SKnown acc
    go acc (SUnknown n :$% sh) = SUnknown (goUnknown (fromSNat' acc * n) sh)
    go acc (SKnown sn :$% sh) = go (mulSNat acc sn) sh

    goUnknown :: Int -> IShX sh -> Int
    goUnknown acc ZSX = acc
    goUnknown acc (SUnknown n :$% sh) = goUnknown (acc * n) sh
    goUnknown acc (SKnown sn :$% sh) = goUnknown (acc * fromSNat' sn) sh

staticShapeFrom :: IShX sh -> StaticShX sh
staticShapeFrom ZSX = ZKX
staticShapeFrom (n :$% sh) = fromSMayNat (\_ -> SUnknown ()) SKnown n :!% staticShapeFrom sh

lemRankApp :: StaticShX sh1 -> StaticShX sh2
           -> Rank (sh1 ++ sh2) :~: Rank sh1 + Rank sh2
lemRankApp _ _ = unsafeCoerce Refl  -- TODO improve this

lemRankAppComm :: StaticShX sh1 -> StaticShX sh2
               -> Rank (sh1 ++ sh2) :~: Rank (sh2 ++ sh1)
lemRankAppComm _ _ = unsafeCoerce Refl  -- TODO improve this

lemKnownNatRank :: IShX sh -> Dict KnownNat (Rank sh)
lemKnownNatRank ZSX = Dict
lemKnownNatRank (_ :$% sh) | Dict <- lemKnownNatRank sh = Dict

lemKnownNatRankSSX :: StaticShX sh -> Dict KnownNat (Rank sh)
lemKnownNatRankSSX ZKX = Dict
lemKnownNatRankSSX (_ :!% ssh) | Dict <- lemKnownNatRankSSX ssh = Dict

shape :: forall sh a. StaticShX sh -> XArray sh a -> IShX sh
shape = \ssh (XArray arr) -> go ssh (S.shapeL arr)
  where
    go :: StaticShX sh' -> [Int] -> IShX sh'
    go ZKX [] = ZSX
    go (n :!% ssh) (i : l) = fromSMayNat (\_ -> SUnknown i) SKnown n :$% go ssh l
    go _ _ = error "Invalid shapeL"

fromVector :: forall sh a. Storable a => IShX sh -> VS.Vector a -> XArray sh a
fromVector sh v
  | Dict <- lemKnownNatRank sh
  = XArray (S.fromVector (shapeLshape sh) v)

toVector :: Storable a => XArray sh a -> VS.Vector a
toVector (XArray arr) = S.toVector arr

scalar :: Storable a => a -> XArray '[] a
scalar = XArray . S.scalar

eqShX :: IShX sh1 -> IShX sh2 -> Bool
eqShX ZSX ZSX = True
eqShX (n :$% sh1) (m :$% sh2) = fromSMayNat' n == fromSMayNat' m && eqShX sh1 sh2
eqShX _ _ = False

-- | Will throw if the array does not have the casted-to shape.
cast :: forall sh1 sh2 sh' a. Rank sh1 ~ Rank sh2
     => StaticShX sh1 -> IShX sh2 -> StaticShX sh'
     -> XArray (sh1 ++ sh') a -> XArray (sh2 ++ sh') a
cast ssh1 sh2 ssh' (XArray arr)
  | Refl <- lemRankApp ssh1 ssh'
  , Refl <- lemRankApp (staticShapeFrom sh2) ssh'
  = let arrsh :: IShX sh1
        (arrsh, _) = shAppSplit (Proxy @sh') ssh1 (shape (ssxAppend ssh1 ssh') (XArray arr))
    in if eqShX arrsh sh2
         then XArray arr
         else error $ "Data.Array.Mixed.cast: Cannot cast (" ++ show arrsh ++ ") to (" ++ show sh2 ++ ")"

unScalar :: Storable a => XArray '[] a -> a
unScalar (XArray a) = S.unScalar a

replicate :: forall sh sh' a. Storable a => IShX sh -> StaticShX sh' -> XArray sh' a -> XArray (sh ++ sh') a
replicate sh ssh' (XArray arr)
  | Dict <- lemKnownNatRankSSX ssh'
  , Dict <- lemKnownNatRankSSX (ssxAppend (staticShapeFrom sh) ssh')
  , Refl <- lemRankApp (staticShapeFrom sh) ssh'
  = XArray (S.stretch (shapeLshape sh ++ S.shapeL arr) $
            S.reshape (map (const 1) (shapeLshape sh) ++ S.shapeL arr) $
              arr)

replicateScal :: forall sh a. Storable a => IShX sh -> a -> XArray sh a
replicateScal sh x
  | Dict <- lemKnownNatRank sh
  = XArray (S.constant (shapeLshape sh) x)

generate :: Storable a => IShX sh -> (IIxX sh -> a) -> XArray sh a
generate sh f = fromVector sh $ VS.generate (shapeSize sh) (f . fromLinearIdx sh)

-- generateM :: (Monad m, Storable a) => IShX sh -> (IIxX sh -> m a) -> m (XArray sh a)
-- generateM sh f | Dict <- lemKnownNatRank sh =
--   XArray . S.fromVector (shapeLshape sh)
--     <$> VS.generateM (shapeSize sh) (f . fromLinearIdx sh)

indexPartial :: Storable a => XArray (sh ++ sh') a -> IIxX sh -> XArray sh' a
indexPartial (XArray arr) ZIX = XArray arr
indexPartial (XArray arr) (i :.% idx) = indexPartial (XArray (S.index arr i)) idx

index :: forall sh a. Storable a => XArray sh a -> IIxX sh -> a
index xarr i
  | Refl <- lemAppNil @sh
  = let XArray arr' = indexPartial xarr i :: XArray '[] a
    in S.unScalar arr'

type family AddMaybe n m where
  AddMaybe Nothing _ = Nothing
  AddMaybe (Just _) Nothing = Nothing
  AddMaybe (Just n) (Just m) = Just (n + m)

-- This should be a function in base
plusSNat :: SNat n -> SNat m -> SNat (n + m)
plusSNat n m = TypeNats.withSomeSNat (TypeNats.fromSNat n + TypeNats.fromSNat m) unsafeCoerce

-- This should be a function in base
mulSNat :: SNat n -> SNat m -> SNat (n * m)
mulSNat n m = TypeNats.withSomeSNat (TypeNats.fromSNat n * TypeNats.fromSNat m) unsafeCoerce

smnAddMaybe :: SMayNat Int SNat n -> SMayNat Int SNat m -> SMayNat Int SNat (AddMaybe n m)
smnAddMaybe (SUnknown n) m = SUnknown (n + fromSMayNat' m)
smnAddMaybe (SKnown n) (SUnknown m) = SUnknown (fromSNat' n + m)
smnAddMaybe (SKnown n) (SKnown m) = SKnown (plusSNat n m)

append :: forall n m sh a. Storable a
       => StaticShX sh -> XArray (n : sh) a -> XArray (m : sh) a -> XArray (AddMaybe n m : sh) a
append ssh (XArray a) (XArray b)
  | Dict <- lemKnownNatRankSSX ssh
  = XArray (S.append a b)

-- | If the prefix of the shape of the input array (@sh@) is empty (i.e.
-- contains a zero), then there is no way to deduce the full shape of the output
-- array (more precisely, the @sh2@ part): that could only come from calling
-- @f@, and there are no subarrays to call @f@ on. @orthotope@ errors out in
-- this case; we choose to fill the shape with zeros wherever we cannot deduce
-- what it should be.
--
-- For example, if:
--
-- @
-- arr :: XArray '[Just 3, Just 0, Just 4, Just 2, Nothing] Int   -- of shape [3, 0, 4, 2, 21]
-- f :: XArray '[Just 2, Nothing] Int -> XArray '[Just 5, Nothing, Just 17] Float
-- @
--
-- then:
--
-- @
-- rerank _ _ _ f arr :: XArray '[Just 3, Just 0, Just 4, Just 5, Nothing, Just 17] Float
-- @
--
-- and this result will have shape @[3, 0, 4, 5, 0, 17]@. Note the second @0@
-- in this shape: we don't know if @f@ intended to return an array with shape 0
-- here (it probably didn't), but there is no better number to put here absent
-- a subarray of the input to pass to @f@.
--
-- In this particular case the fact that @sh@ is empty was evident from the
-- type-level information, but the same situation occurs when @sh@ consists of
-- @Nothing@s, and some of those happen to be zero at runtime.
rerank :: forall sh sh1 sh2 a b.
          (Storable a, Storable b)
       => StaticShX sh -> StaticShX sh1 -> StaticShX sh2
       -> (XArray sh1 a -> XArray sh2 b)
       -> XArray (sh ++ sh1) a -> XArray (sh ++ sh2) b
rerank ssh ssh1 ssh2 f xarr@(XArray arr)
  | Dict <- lemKnownNatRankSSX (ssxAppend ssh ssh2)
  = let (sh, _) = shAppSplit (Proxy @sh1) ssh (shape (ssxAppend ssh ssh1) xarr)
    in if any (== 0) (shapeLshape sh)
         then XArray (S.fromList (shapeLshape (shAppend sh (completeShXzeros ssh2))) [])
         else case () of
           () | Dict <- lemKnownNatRankSSX ssh
              , Dict <- lemKnownNatRankSSX ssh2
              , Refl <- lemRankApp ssh ssh1
              , Refl <- lemRankApp ssh ssh2
              -> XArray (S.rerank @(Rank sh) @(Rank sh1) @(Rank sh2)
                          (\a -> let XArray r = f (XArray a) in r)
                          arr)

rerankTop :: forall sh1 sh2 sh a b.
             (Storable a, Storable b)
          => StaticShX sh1 -> StaticShX sh2 -> StaticShX sh
          -> (XArray sh1 a -> XArray sh2 b)
          -> XArray (sh1 ++ sh) a -> XArray (sh2 ++ sh) b
rerankTop ssh1 ssh2 ssh f = transpose2 ssh ssh2 . rerank ssh ssh1 ssh2 f . transpose2 ssh1 ssh

-- | The caveat about empty arrays at @rerank@ applies here too.
rerank2 :: forall sh sh1 sh2 a b c.
           (Storable a, Storable b, Storable c)
        => StaticShX sh -> StaticShX sh1 -> StaticShX sh2
        -> (XArray sh1 a -> XArray sh1 b -> XArray sh2 c)
        -> XArray (sh ++ sh1) a -> XArray (sh ++ sh1) b -> XArray (sh ++ sh2) c
rerank2 ssh ssh1 ssh2 f xarr1@(XArray arr1) (XArray arr2)
  | Dict <- lemKnownNatRankSSX (ssxAppend ssh ssh2)
  = let (sh, _) = shAppSplit (Proxy @sh1) ssh (shape (ssxAppend ssh ssh1) xarr1)
    in if any (== 0) (shapeLshape sh)
         then XArray (S.fromList (shapeLshape (shAppend sh (completeShXzeros ssh2))) [])
         else case () of
           () | Dict <- lemKnownNatRankSSX ssh
              , Dict <- lemKnownNatRankSSX ssh2
              , Refl <- lemRankApp ssh ssh1
              , Refl <- lemRankApp ssh ssh2
              -> XArray (S.rerank2 @(Rank sh) @(Rank sh1) @(Rank sh2)
                          (\a b -> let XArray r = f (XArray a) (XArray b) in r)
                          arr1 arr2)

type family Elem x l where
  Elem x '[] = 'False
  Elem x (x : _) = 'True
  Elem x (_ : ys) = Elem x ys

type family AllElem' as bs where
  AllElem' '[] bs = 'True
  AllElem' (a : as) bs = Elem a bs && AllElem' as bs

type AllElem as bs = Assert (AllElem' as bs)
  (TypeError (Text "The elements of " :<>: ShowType as :<>: Text " are not all in " :<>: ShowType bs))

type family Count i n where
  Count n n = '[]
  Count i n = i : Count (i + 1) n

type Permutation as = (AllElem as (Count 0 (Rank as)), AllElem (Count 0 (Rank as)) as)

type family Index i sh where
  Index 0 (n : sh) = n
  Index i (_ : sh) = Index (i - 1) sh

type family Permute is sh where
  Permute '[] sh = '[]
  Permute (i : is) sh = Index i sh : Permute is sh

type PermutePrefix is sh = Permute is (TakeLen is sh) ++ DropLen is sh

data HList f list where
  HNil :: HList f '[]
  HCons :: f a -> HList f l -> HList f (a : l)
infixr 5 `HCons`

foldHList :: Monoid m => (forall a. f a -> m) -> HList f list -> m
foldHList _ HNil = mempty
foldHList f (x `HCons` l) = f x <> foldHList f l

type family TakeLen ref l where
  TakeLen '[] l = '[]
  TakeLen (_ : ref) (x : xs) = x : TakeLen ref xs

type family DropLen ref l where
  DropLen '[] l = l
  DropLen (_ : ref) (_ : xs) = DropLen ref xs

lemRankPermute :: Proxy sh -> HList SNat is -> Rank (Permute is sh) :~: Rank is
lemRankPermute _ HNil = Refl
lemRankPermute p (_ `HCons` is) | Refl <- lemRankPermute p is = Refl

lemRankDropLen :: forall is sh. (Rank is <= Rank sh)
               => StaticShX sh -> HList SNat is -> Rank (DropLen is sh) :~: Rank sh - Rank is
lemRankDropLen ZKX HNil = Refl
lemRankDropLen (_ :!% sh) (_ `HCons` is) | Refl <- lemRankDropLen sh is = Refl
lemRankDropLen (_ :!% _) HNil = Refl
lemRankDropLen ZKX (_ `HCons` _) = error "1 <= 0"

lemIndexSucc :: Proxy i -> Proxy a -> Proxy l -> Index (i + 1) (a : l) :~: Index i l
lemIndexSucc _ _ _ = unsafeCoerce Refl

listxTakeLen :: forall f is sh. HList SNat is -> ListX sh f -> ListX (TakeLen is sh) f
listxTakeLen HNil _ = ZX
listxTakeLen (_ `HCons` is) (n ::% sh) = n ::% listxTakeLen is sh
listxTakeLen (_ `HCons` _) ZX = error "Permutation longer than shape"

listxDropLen :: forall f is sh. HList SNat is -> ListX sh f -> ListX (DropLen is sh) f
listxDropLen HNil sh = sh
listxDropLen (_ `HCons` is) (_ ::% sh) = listxDropLen is sh
listxDropLen (_ `HCons` _) ZX = error "Permutation longer than shape"

listxPermute :: forall f is sh. HList SNat is -> ListX sh f -> ListX (Permute is sh) f
listxPermute HNil _ = ZX
listxPermute (i `HCons` (is :: HList SNat is')) (sh :: ListX sh f) = listxIndex (Proxy @is') (Proxy @sh) i sh (listxPermute is sh)

listxIndex :: forall f is shT i sh. Proxy is -> Proxy shT -> SNat i -> ListX sh f -> ListX (Permute is shT) f -> ListX (Index i sh : Permute is shT) f
listxIndex _ _ SZ (n ::% _) rest = n ::% rest
listxIndex p pT (SS (i :: SNat i')) ((_ :: f n) ::% (sh :: ListX sh' f)) rest
  | Refl <- lemIndexSucc (Proxy @i') (Proxy @n) (Proxy @sh')
  = listxIndex p pT i sh rest
listxIndex _ _ _ ZX _ = error "Index into empty shape"

listxPermutePrefix :: forall f is sh. HList SNat is -> ListX sh f -> ListX (PermutePrefix is sh) f
listxPermutePrefix perm sh = listxAppend (listxPermute perm (listxTakeLen perm sh)) (listxDropLen perm sh)

ssxTakeLen :: forall is sh. HList SNat is -> StaticShX sh -> StaticShX (TakeLen is sh)
ssxTakeLen = coerce (listxTakeLen @(SMayNat () SNat))

ssxDropLen :: HList SNat is -> StaticShX sh -> StaticShX (DropLen is sh)
ssxDropLen = coerce (listxDropLen @(SMayNat () SNat))

ssxPermute :: HList SNat is -> StaticShX sh -> StaticShX (Permute is sh)
ssxPermute = coerce (listxPermute @(SMayNat () SNat))

ssxIndex :: Proxy is -> Proxy shT -> SNat i -> StaticShX sh -> StaticShX (Permute is shT) -> StaticShX (Index i sh : Permute is shT)
ssxIndex p1 p2 = coerce (listxIndex @(SMayNat () SNat) p1 p2)

ssxPermutePrefix :: HList SNat is -> StaticShX sh -> StaticShX (PermutePrefix is sh)
ssxPermutePrefix = coerce (listxPermutePrefix @(SMayNat () SNat))

shTakeLen :: forall is sh. HList SNat is -> IShX sh -> IShX (TakeLen is sh)
shTakeLen = coerce (listxTakeLen @(SMayNat Int SNat))

shDropLen :: HList SNat is -> IShX sh -> IShX (DropLen is sh)
shDropLen = coerce (listxDropLen @(SMayNat Int SNat))

shPermute :: HList SNat is -> IShX sh -> IShX (Permute is sh)
shPermute = coerce (listxPermute @(SMayNat Int SNat))

shIndex :: Proxy is -> Proxy shT -> SNat i -> IShX sh -> IShX (Permute is shT) -> IShX (Index i sh : Permute is shT)
shIndex p1 p2 = coerce (listxIndex @(SMayNat Int SNat) p1 p2)

shPermutePrefix :: HList SNat is -> IShX sh -> IShX (PermutePrefix is sh)
shPermutePrefix = coerce (listxPermutePrefix @(SMayNat Int SNat))

-- | The list argument gives indices into the original dimension list.
transpose :: forall is sh a. (Permutation is, Rank is <= Rank sh)
          => StaticShX sh
          -> HList SNat is
          -> XArray sh a
          -> XArray (PermutePrefix is sh) a
transpose ssh perm (XArray arr)
  | Dict <- lemKnownNatRankSSX ssh
  , Refl <- lemRankApp (ssxPermute perm (ssxTakeLen perm ssh)) (ssxDropLen perm ssh)
  , Refl <- lemRankPermute (Proxy @(TakeLen is sh)) perm
  , Refl <- lemRankDropLen ssh perm
  = let perm' = foldHList (\sn -> [fromSNat' sn]) perm :: [Int]
    in XArray (S.transpose perm' arr)

-- | The list argument gives indices into the original dimension list.
--
-- The permutation (the list) must have length <= @n@. If it is longer, this
-- function throws.
transposeUntyped :: forall n sh a.
                    SNat n -> StaticShX sh -> [Int]
                 -> XArray (Replicate n Nothing ++ sh) a -> XArray (Replicate n Nothing ++ sh) a
transposeUntyped sn ssh perm (XArray arr)
  | length perm <= fromSNat' sn
  , Dict <- lemKnownNatRankSSX (ssxAppend (ssxReplicate sn) ssh)
  = XArray (S.transpose perm arr)
  | otherwise
  = error "Data.Array.Mixed.transposeUntyped: Permutation longer than length of unshaped prefix of shape type"

transpose2 :: forall sh1 sh2 a.
              StaticShX sh1 -> StaticShX sh2
           -> XArray (sh1 ++ sh2) a -> XArray (sh2 ++ sh1) a
transpose2 ssh1 ssh2 (XArray arr)
  | Refl <- lemRankApp ssh1 ssh2
  , Refl <- lemRankApp ssh2 ssh1
  , Dict <- lemKnownNatRankSSX (ssxAppend ssh1 ssh2)
  , Dict <- lemKnownNatRankSSX (ssxAppend ssh2 ssh1)
  , Refl <- lemRankAppComm ssh1 ssh2
  , let n1 = ssxLength ssh1
  = XArray (S.transpose (ssxIotaFrom n1 ssh2 ++ ssxIotaFrom 0 ssh1) arr)

sumFull :: (Storable a, Num a) => XArray sh a -> a
sumFull (XArray arr) = S.sumA arr

sumInner :: forall sh sh' a. (Storable a, NumElt a)
         => StaticShX sh -> StaticShX sh' -> XArray (sh ++ sh') a -> XArray sh a
sumInner ssh ssh' arr
  | Refl <- lemAppNil @sh
  = let (_, sh') = shAppSplit (Proxy @sh') ssh (shape (ssxAppend ssh ssh') arr)
        sh'F = flattenSh sh' :$% ZSX
        ssh'F = staticShapeFrom sh'F

        go :: XArray (sh ++ '[Flatten sh']) a -> XArray sh a
        go (XArray arr')
          | Refl <- lemRankApp ssh ssh'F
          , let sn = snatLengthListX (let StaticShX l = ssh in l)
          = XArray (numEltSum1Inner sn arr')

    in go $
       transpose2 ssh'F ssh $
       reshapePartial ssh' ssh sh'F $
       transpose2 ssh ssh' $
         arr

sumOuter :: forall sh sh' a. (Storable a, NumElt a)
         => StaticShX sh -> StaticShX sh' -> XArray (sh ++ sh') a -> XArray sh' a
sumOuter ssh ssh' arr
  | Refl <- lemAppNil @sh
  = let (sh, _) = shAppSplit (Proxy @sh') ssh (shape (ssxAppend ssh ssh') arr)
        shF = flattenSh sh :$% ZSX
    in sumInner ssh' (staticShapeFrom shF) $
       transpose2 (staticShapeFrom shF) ssh' $
       reshapePartial ssh ssh' shF $
         arr

fromListOuter :: forall n sh a. Storable a
              => StaticShX (n : sh) -> [XArray sh a] -> XArray (n : sh) a
fromListOuter ssh l
  | Dict <- lemKnownNatRankSSX ssh
  = case ssh of
      SKnown m :!% _ | fromSNat' m /= length l ->
        error $ "Data.Array.Mixed.fromListOuter: length of list (" ++ show (length l) ++ ")" ++
                "does not match the type (" ++ show (fromSNat' m) ++ ")"
      _ -> XArray (S.ravel (ORB.fromList [length l] (coerce @[XArray sh a] @[S.Array (Rank sh) a] l)))

toListOuter :: Storable a => XArray (n : sh) a -> [XArray sh a]
toListOuter (XArray arr) =
  case S.shapeL arr of
    0 : _ -> []
    _ -> coerce (ORB.toList (S.unravel arr))

fromList1 :: Storable a => StaticShX '[n] -> [a] -> XArray '[n] a
fromList1 ssh l =
  let n = length l
  in case ssh of
       SKnown m :!% _ | fromSNat' m /= n ->
         error $ "Data.Array.Mixed.fromList1: length of list (" ++ show n ++ ")" ++
                 "does not match the type (" ++ show (fromSNat' m) ++ ")"
       _ -> XArray (S.fromVector [n] (VS.fromListN n l))

toList1 :: Storable a => XArray '[n] a -> [a]
toList1 (XArray arr) = S.toList arr

-- | Throws if the given shape is not, in fact, empty.
empty :: forall sh a. Storable a => IShX sh -> XArray sh a
empty sh
  | Dict <- lemKnownNatRank sh
  = XArray (S.constant (shapeLshape sh)
                       (error "Data.Array.Mixed.empty: shape was not empty"))

slice :: SNat i -> SNat n -> XArray (Just (i + n + k) : sh) a -> XArray (Just n : sh) a
slice i n (XArray arr) = XArray (S.slice [(fromSNat' i, fromSNat' n)] arr)

sliceU :: Int -> Int -> XArray (Nothing : sh) a -> XArray (Nothing : sh) a
sliceU i n (XArray arr) = XArray (S.slice [(i, n)] arr)

rev1 :: XArray (n : sh) a -> XArray (n : sh) a
rev1 (XArray arr) = XArray (S.rev [0] arr)

-- | Throws if the given array and the target shape do not have the same number of elements.
reshape :: forall sh1 sh2 a. Storable a => StaticShX sh1 -> IShX sh2 -> XArray sh1 a -> XArray sh2 a
reshape ssh1 sh2 (XArray arr)
  | Dict <- lemKnownNatRankSSX ssh1
  , Dict <- lemKnownNatRank sh2
  = XArray (S.reshape (shapeLshape sh2) arr)

-- | Throws if the given array and the target shape do not have the same number of elements.
reshapePartial :: forall sh1 sh2 sh' a. Storable a => StaticShX sh1 -> StaticShX sh' -> IShX sh2 -> XArray (sh1 ++ sh') a -> XArray (sh2 ++ sh') a
reshapePartial ssh1 ssh' sh2 (XArray arr)
  | Dict <- lemKnownNatRankSSX (ssxAppend ssh1 ssh')
  , Dict <- lemKnownNatRankSSX (ssxAppend (staticShapeFrom sh2) ssh')
  = XArray (S.reshape (shapeLshape sh2 ++ drop (lengthStaticShX ssh1) (S.shapeL arr)) arr)

-- this was benchmarked to be (slightly) faster than S.iota, S.generate and S.fromVector(VS.enumFromTo).
iota :: (Enum a, Storable a) => SNat n -> XArray '[Just n] a
iota sn = XArray (S.fromVector [fromSNat' sn] (VS.fromListN (fromSNat' sn) [toEnum 0 .. toEnum (fromSNat' sn - 1)]))