aboutsummaryrefslogtreecommitdiff
path: root/test/Gen.hs
blob: 5f84ce07c7371df658a1a824096ffefad43d2d97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ImportQualifiedPost #-}
{-# LANGUAGE NumericUnderscores #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeAbstractions #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
module Gen where

import Data.ByteString qualified as BS
import Data.Foldable (toList)
import Data.Vector.Storable qualified as VS
import Foreign
import GHC.TypeLits
import GHC.TypeNats qualified as TN

import Data.Array.Mixed.Types
import Data.Array.Nested

import Hedgehog
import Hedgehog.Gen qualified as Gen
import Hedgehog.Range qualified as Range
import System.Random qualified as Random

import Util


genRank :: (forall n. SNat n -> PropertyT IO ()) -> PropertyT IO ()
genRank k = do
  rank <- forAll $ Gen.int (Range.linear 0 8)
  TN.withSomeSNat (fromIntegral rank) k

genLowBiased :: RealFloat a => (a, a) -> Gen a
genLowBiased (lo, hi) = do
  x <- Gen.realFloat (Range.linearFrac 0 1)
  return (lo + x * x * x * (hi - lo))

shuffleShR :: IShR n -> Gen (IShR n)
shuffleShR = \sh -> go (length (toList sh)) (toList sh) sh
  where
    go :: Int -> [Int] -> IShR n -> Gen (IShR n)
    go _    _   ZSR = return ZSR
    go nbag bag (_ :$: sh) = do
      idx <- Gen.int (Range.linear 0 (nbag - 1))
      let (dim, bag') = case splitAt idx bag of
                          (pre, n : post) -> (n, pre ++ post)
                          _ -> error "unreachable"
      (dim :$:) <$> go (nbag - 1) bag' sh

genShR :: SNat n -> Gen (IShR n)
genShR sn = do
  let n = fromSNat' sn
  targetSize <- Gen.int (Range.linear 0 100_000)
  let genDims :: SNat m -> Int -> Gen (IShR m)
      genDims SZ _ = return ZSR
      genDims (SS m) 0 = do
        dim <- Gen.int (Range.linear 0 20)
        dims <- genDims m 0
        return (dim :$: dims)
      genDims (SS m) tgt = do
        dim <- Gen.frequency [(20 * n, round <$> genLowBiased @Double (2.0, max 2.0 (sqrt (fromIntegral tgt))))
                             ,(2     , return tgt)
                             ,(4     , return 1)
                             ,(1     , return 0)]
        dims <- genDims m (if dim == 0 then 0 else tgt `div` dim)
        return (dim :$: dims)
  dims <- genDims sn targetSize
  let dimsL = toList dims
      maxdim = maximum dimsL
      cap = binarySearch (`div` 2) 1 maxdim (\cap' -> product (min cap' <$> dimsL) <= targetSize)
  shuffleShR (min cap <$> dims)

genStorables :: forall a. Storable a => Range Int -> (Word64 -> a) -> GenT IO (VS.Vector a)
genStorables rng f = do
  n <- Gen.int rng
  seed <- Gen.resize 99 $ Gen.int Range.linearBounded
  let gen0 = Random.mkStdGen seed
      (bs, _) = Random.genByteString (8 * n) gen0
  let readW64 i = sum (zipWith (*) (iterate (*256) 1) [fromIntegral (bs `BS.index` (8 * i + j)) | j <- [0..7]])
  return $ VS.generate n (f . readW64)