diff options
Diffstat (limited to 'src/Data/Array/Nested/Ranked')
-rw-r--r-- | src/Data/Array/Nested/Ranked/Base.hs | 268 | ||||
-rw-r--r-- | src/Data/Array/Nested/Ranked/Shape.hs | 369 |
2 files changed, 637 insertions, 0 deletions
diff --git a/src/Data/Array/Nested/Ranked/Base.hs b/src/Data/Array/Nested/Ranked/Base.hs new file mode 100644 index 0000000..babc809 --- /dev/null +++ b/src/Data/Array/Nested/Ranked/Base.hs @@ -0,0 +1,268 @@ +{-# LANGUAGE CPP #-} +{-# LANGUAGE DataKinds #-} +{-# LANGUAGE DeriveGeneric #-} +{-# LANGUAGE FlexibleContexts #-} +{-# LANGUAGE FlexibleInstances #-} +{-# LANGUAGE ImportQualifiedPost #-} +{-# LANGUAGE InstanceSigs #-} +{-# LANGUAGE PolyKinds #-} +{-# LANGUAGE RankNTypes #-} +{-# LANGUAGE ScopedTypeVariables #-} +{-# LANGUAGE StandaloneDeriving #-} +{-# LANGUAGE StandaloneKindSignatures #-} +{-# LANGUAGE TypeApplications #-} +{-# LANGUAGE TypeFamilies #-} +{-# LANGUAGE TypeOperators #-} +{-# LANGUAGE UndecidableInstances #-} +{-# OPTIONS_HADDOCK not-home #-} +module Data.Array.Nested.Ranked.Base where + +import Prelude hiding (mappend, mconcat) + +import Control.DeepSeq (NFData(..)) +import Control.Monad.ST +import Data.Bifunctor (first) +import Data.Coerce (coerce) +import Data.Kind (Type) +import Data.List.NonEmpty (NonEmpty) +import Data.Proxy +import Data.Type.Equality +import Foreign.Storable (Storable) +import GHC.Float qualified (expm1, log1mexp, log1p, log1pexp) +import GHC.Generics (Generic) +import GHC.TypeLits + +#ifndef OXAR_DEFAULT_SHOW_INSTANCES +import Data.Foldable (toList) +#endif + +import Data.Array.Nested.Lemmas +import Data.Array.Nested.Mixed +import Data.Array.Nested.Mixed.Shape +import Data.Array.Nested.Ranked.Shape +import Data.Array.Nested.Types +import Data.Array.Strided.Arith +import Data.Array.XArray (XArray(..)) + + +-- | A rank-typed array: the number of dimensions of the array (its /rank/) is +-- represented on the type level as a 'Nat'. +-- +-- Valid elements of a ranked arrays are described by the 'Elt' type class. +-- Because 'Ranked' itself is also an instance of 'Elt', nested arrays are +-- supported (and are represented as a single, flattened, struct-of-arrays +-- array internally). +-- +-- 'Ranked' is a newtype around a 'Mixed' of 'Nothing's. +type Ranked :: Nat -> Type -> Type +newtype Ranked n a = Ranked (Mixed (Replicate n Nothing) a) +#ifdef OXAR_DEFAULT_SHOW_INSTANCES +deriving instance Show (Mixed (Replicate n Nothing) a) => Show (Ranked n a) +#endif +deriving instance Eq (Mixed (Replicate n Nothing) a) => Eq (Ranked n a) +deriving instance Ord (Mixed (Replicate n Nothing) a) => Ord (Ranked n a) + +#ifndef OXAR_DEFAULT_SHOW_INSTANCES +instance (Show a, Elt a) => Show (Ranked n a) where + showsPrec d arr@(Ranked marr) = + let sh = show (toList (rshape arr)) + in showsMixedArray ("rfromListLinear " ++ sh) ("rreplicate " ++ sh) d marr +#endif + +instance Elt a => NFData (Ranked n a) where + rnf (Ranked arr) = rnf arr + +-- just unwrap the newtype and defer to the general instance for nested arrays +newtype instance Mixed sh (Ranked n a) = M_Ranked (Mixed sh (Mixed (Replicate n Nothing) a)) + deriving (Generic) +#ifdef OXAR_DEFAULT_SHOW_INSTANCES +deriving instance Show (Mixed sh (Mixed (Replicate n Nothing) a)) => Show (Mixed sh (Ranked n a)) +#endif + +deriving instance Eq (Mixed sh (Mixed (Replicate n Nothing) a)) => Eq (Mixed sh (Ranked n a)) + +newtype instance MixedVecs s sh (Ranked n a) = MV_Ranked (MixedVecs s sh (Mixed (Replicate n Nothing) a)) + +-- 'Ranked' and 'Shaped' can already be used at the top level of an array nest; +-- these instances allow them to also be used as elements of arrays, thus +-- making them first-class in the API. +instance Elt a => Elt (Ranked n a) where + mshape (M_Ranked arr) = mshape arr + mindex (M_Ranked arr) i = Ranked (mindex arr i) + + mindexPartial :: forall sh sh'. Mixed (sh ++ sh') (Ranked n a) -> IIxX sh -> Mixed sh' (Ranked n a) + mindexPartial (M_Ranked arr) i = + coerce @(Mixed sh' (Mixed (Replicate n Nothing) a)) @(Mixed sh' (Ranked n a)) $ + mindexPartial arr i + + mscalar (Ranked x) = M_Ranked (M_Nest ZSX x) + + mfromListOuter :: forall sh. NonEmpty (Mixed sh (Ranked n a)) -> Mixed (Nothing : sh) (Ranked n a) + mfromListOuter l = M_Ranked (mfromListOuter (coerce l)) + + mtoListOuter :: forall m sh. Mixed (m : sh) (Ranked n a) -> [Mixed sh (Ranked n a)] + mtoListOuter (M_Ranked arr) = + coerce @[Mixed sh (Mixed (Replicate n 'Nothing) a)] @[Mixed sh (Ranked n a)] (mtoListOuter arr) + + mlift :: forall sh1 sh2. + StaticShX sh2 + -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b) + -> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a) + mlift ssh2 f (M_Ranked arr) = + coerce @(Mixed sh2 (Mixed (Replicate n Nothing) a)) @(Mixed sh2 (Ranked n a)) $ + mlift ssh2 f arr + + mlift2 :: forall sh1 sh2 sh3. + StaticShX sh3 + -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b) + -> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a) -> Mixed sh3 (Ranked n a) + mlift2 ssh3 f (M_Ranked arr1) (M_Ranked arr2) = + coerce @(Mixed sh3 (Mixed (Replicate n Nothing) a)) @(Mixed sh3 (Ranked n a)) $ + mlift2 ssh3 f arr1 arr2 + + mliftL :: forall sh1 sh2. + StaticShX sh2 + -> (forall sh' b. Storable b => StaticShX sh' -> NonEmpty (XArray (sh1 ++ sh') b) -> NonEmpty (XArray (sh2 ++ sh') b)) + -> NonEmpty (Mixed sh1 (Ranked n a)) -> NonEmpty (Mixed sh2 (Ranked n a)) + mliftL ssh2 f l = + coerce @(NonEmpty (Mixed sh2 (Mixed (Replicate n Nothing) a))) + @(NonEmpty (Mixed sh2 (Ranked n a))) $ + mliftL ssh2 f (coerce l) + + mcastPartial ssh1 ssh2 psh' (M_Ranked arr) = M_Ranked (mcastPartial ssh1 ssh2 psh' arr) + + mtranspose perm (M_Ranked arr) = M_Ranked (mtranspose perm arr) + + mconcat l = M_Ranked (mconcat (coerce l)) + + mrnf (M_Ranked arr) = mrnf arr + + type ShapeTree (Ranked n a) = (IShR n, ShapeTree a) + + mshapeTree (Ranked arr) = first shrFromShX2 (mshapeTree arr) + + mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2 + + mshapeTreeEmpty _ (sh, t) = shrSize sh == 0 && mshapeTreeEmpty (Proxy @a) t + + mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")" + + marrayStrides (M_Ranked arr) = marrayStrides arr + + mvecsWrite :: forall sh s. IShX sh -> IIxX sh -> Ranked n a -> MixedVecs s sh (Ranked n a) -> ST s () + mvecsWrite sh idx (Ranked arr) vecs = + mvecsWrite sh idx arr + (coerce @(MixedVecs s sh (Ranked n a)) @(MixedVecs s sh (Mixed (Replicate n Nothing) a)) + vecs) + + mvecsWritePartial :: forall sh sh' s. + IShX (sh ++ sh') -> IIxX sh -> Mixed sh' (Ranked n a) + -> MixedVecs s (sh ++ sh') (Ranked n a) + -> ST s () + mvecsWritePartial sh idx arr vecs = + mvecsWritePartial sh idx + (coerce @(Mixed sh' (Ranked n a)) + @(Mixed sh' (Mixed (Replicate n Nothing) a)) + arr) + (coerce @(MixedVecs s (sh ++ sh') (Ranked n a)) + @(MixedVecs s (sh ++ sh') (Mixed (Replicate n Nothing) a)) + vecs) + + mvecsFreeze :: forall sh s. IShX sh -> MixedVecs s sh (Ranked n a) -> ST s (Mixed sh (Ranked n a)) + mvecsFreeze sh vecs = + coerce @(Mixed sh (Mixed (Replicate n Nothing) a)) + @(Mixed sh (Ranked n a)) + <$> mvecsFreeze sh + (coerce @(MixedVecs s sh (Ranked n a)) + @(MixedVecs s sh (Mixed (Replicate n Nothing) a)) + vecs) + +instance (KnownNat n, KnownElt a) => KnownElt (Ranked n a) where + memptyArrayUnsafe :: forall sh. IShX sh -> Mixed sh (Ranked n a) + memptyArrayUnsafe i + | Dict <- lemKnownReplicate (SNat @n) + = coerce @(Mixed sh (Mixed (Replicate n Nothing) a)) @(Mixed sh (Ranked n a)) $ + memptyArrayUnsafe i + + mvecsUnsafeNew idx (Ranked arr) + | Dict <- lemKnownReplicate (SNat @n) + = MV_Ranked <$> mvecsUnsafeNew idx arr + + mvecsNewEmpty _ + | Dict <- lemKnownReplicate (SNat @n) + = MV_Ranked <$> mvecsNewEmpty (Proxy @(Mixed (Replicate n Nothing) a)) + + +liftRanked1 :: forall n a b. + (Mixed (Replicate n Nothing) a -> Mixed (Replicate n Nothing) b) + -> Ranked n a -> Ranked n b +liftRanked1 = coerce + +liftRanked2 :: forall n a b c. + (Mixed (Replicate n Nothing) a -> Mixed (Replicate n Nothing) b -> Mixed (Replicate n Nothing) c) + -> Ranked n a -> Ranked n b -> Ranked n c +liftRanked2 = coerce + +instance (NumElt a, PrimElt a) => Num (Ranked n a) where + (+) = liftRanked2 (+) + (-) = liftRanked2 (-) + (*) = liftRanked2 (*) + negate = liftRanked1 negate + abs = liftRanked1 abs + signum = liftRanked1 signum + fromInteger = error "Data.Array.Nested(Ranked).fromInteger: No singletons available, use explicit rreplicateScal" + +instance (FloatElt a, PrimElt a) => Fractional (Ranked n a) where + fromRational _ = error "Data.Array.Nested(Ranked).fromRational: No singletons available, use explicit rreplicateScal" + recip = liftRanked1 recip + (/) = liftRanked2 (/) + +instance (FloatElt a, PrimElt a) => Floating (Ranked n a) where + pi = error "Data.Array.Nested(Ranked).pi: No singletons available, use explicit rreplicateScal" + exp = liftRanked1 exp + log = liftRanked1 log + sqrt = liftRanked1 sqrt + (**) = liftRanked2 (**) + logBase = liftRanked2 logBase + sin = liftRanked1 sin + cos = liftRanked1 cos + tan = liftRanked1 tan + asin = liftRanked1 asin + acos = liftRanked1 acos + atan = liftRanked1 atan + sinh = liftRanked1 sinh + cosh = liftRanked1 cosh + tanh = liftRanked1 tanh + asinh = liftRanked1 asinh + acosh = liftRanked1 acosh + atanh = liftRanked1 atanh + log1p = liftRanked1 GHC.Float.log1p + expm1 = liftRanked1 GHC.Float.expm1 + log1pexp = liftRanked1 GHC.Float.log1pexp + log1mexp = liftRanked1 GHC.Float.log1mexp + +rquotArray, rremArray :: (IntElt a, PrimElt a) => Ranked n a -> Ranked n a -> Ranked n a +rquotArray = liftRanked2 mquotArray +rremArray = liftRanked2 mremArray + +ratan2Array :: (FloatElt a, PrimElt a) => Ranked n a -> Ranked n a -> Ranked n a +ratan2Array = liftRanked2 matan2Array + + +rshape :: Elt a => Ranked n a -> IShR n +rshape (Ranked arr) = shrFromShX2 (mshape arr) + +rrank :: Elt a => Ranked n a -> SNat n +rrank = shrRank . rshape + +-- Needed already here, but re-exported in Data.Array.Nested.Convert. +shrFromShX :: forall sh. IShX sh -> IShR (Rank sh) +shrFromShX ZSX = ZSR +shrFromShX (n :$% idx) = fromSMayNat' n :$: shrFromShX idx + +-- Needed already here, but re-exported in Data.Array.Nested.Convert. +-- | Convenience wrapper around 'shrFromShX' that applies 'lemRankReplicate'. +shrFromShX2 :: forall n. IShX (Replicate n Nothing) -> IShR n +shrFromShX2 sh + | Refl <- lemRankReplicate (Proxy @n) + = shrFromShX sh diff --git a/src/Data/Array/Nested/Ranked/Shape.hs b/src/Data/Array/Nested/Ranked/Shape.hs new file mode 100644 index 0000000..8b670e5 --- /dev/null +++ b/src/Data/Array/Nested/Ranked/Shape.hs @@ -0,0 +1,369 @@ +{-# LANGUAGE CPP #-} +{-# LANGUAGE DataKinds #-} +{-# LANGUAGE DeriveFoldable #-} +{-# LANGUAGE DeriveFunctor #-} +{-# LANGUAGE DeriveGeneric #-} +{-# LANGUAGE DerivingStrategies #-} +{-# LANGUAGE FlexibleInstances #-} +{-# LANGUAGE GADTs #-} +{-# LANGUAGE GeneralizedNewtypeDeriving #-} +{-# LANGUAGE ImportQualifiedPost #-} +{-# LANGUAGE NoStarIsType #-} +{-# LANGUAGE PatternSynonyms #-} +{-# LANGUAGE PolyKinds #-} +{-# LANGUAGE QuantifiedConstraints #-} +{-# LANGUAGE RankNTypes #-} +{-# LANGUAGE RoleAnnotations #-} +{-# LANGUAGE ScopedTypeVariables #-} +{-# LANGUAGE StandaloneDeriving #-} +{-# LANGUAGE StandaloneKindSignatures #-} +{-# LANGUAGE StrictData #-} +{-# LANGUAGE TypeApplications #-} +{-# LANGUAGE TypeFamilies #-} +{-# LANGUAGE TypeOperators #-} +{-# LANGUAGE UndecidableInstances #-} +{-# LANGUAGE ViewPatterns #-} +{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-} +{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-} +module Data.Array.Nested.Ranked.Shape where + +import Control.DeepSeq (NFData(..)) +import Data.Coerce (coerce) +import Data.Foldable qualified as Foldable +import Data.Kind (Type) +import Data.Proxy +import Data.Type.Equality +import GHC.Generics (Generic) +import GHC.IsList (IsList) +import GHC.IsList qualified as IsList +import GHC.TypeLits +import GHC.TypeNats qualified as TN + +import Data.Array.Nested.Lemmas +import Data.Array.Nested.Types + + +-- * Ranked lists + +type role ListR nominal representational +type ListR :: Nat -> Type -> Type +data ListR n i where + ZR :: ListR 0 i + (:::) :: forall n {i}. i -> ListR n i -> ListR (n + 1) i +deriving instance Eq i => Eq (ListR n i) +deriving instance Ord i => Ord (ListR n i) +deriving instance Functor (ListR n) +deriving instance Foldable (ListR n) +infixr 3 ::: + +#ifdef OXAR_DEFAULT_SHOW_INSTANCES +deriving instance Show i => Show (ListR n i) +#else +instance Show i => Show (ListR n i) where + showsPrec _ = listrShow shows +#endif + +instance NFData i => NFData (ListR n i) where + rnf ZR = () + rnf (x ::: l) = rnf x `seq` rnf l + +data UnconsListRRes i n1 = + forall n. (n + 1 ~ n1) => UnconsListRRes (ListR n i) i +listrUncons :: ListR n1 i -> Maybe (UnconsListRRes i n1) +listrUncons (i ::: sh') = Just (UnconsListRRes sh' i) +listrUncons ZR = Nothing + +-- | This checks only whether the ranks are equal, not whether the actual +-- values are. +listrEqRank :: ListR n i -> ListR n' i -> Maybe (n :~: n') +listrEqRank ZR ZR = Just Refl +listrEqRank (_ ::: sh) (_ ::: sh') + | Just Refl <- listrEqRank sh sh' + = Just Refl +listrEqRank _ _ = Nothing + +-- | This compares the lists for value equality. +listrEqual :: Eq i => ListR n i -> ListR n' i -> Maybe (n :~: n') +listrEqual ZR ZR = Just Refl +listrEqual (i ::: sh) (j ::: sh') + | Just Refl <- listrEqual sh sh' + , i == j + = Just Refl +listrEqual _ _ = Nothing + +listrShow :: forall n i. (i -> ShowS) -> ListR n i -> ShowS +listrShow f l = showString "[" . go "" l . showString "]" + where + go :: String -> ListR n' i -> ShowS + go _ ZR = id + go prefix (x ::: xs) = showString prefix . f x . go "," xs + +listrLength :: ListR n i -> Int +listrLength = length + +listrRank :: ListR n i -> SNat n +listrRank ZR = SNat +listrRank (_ ::: sh) = snatSucc (listrRank sh) + +listrAppend :: ListR n i -> ListR m i -> ListR (n + m) i +listrAppend ZR sh = sh +listrAppend (x ::: xs) sh = x ::: listrAppend xs sh + +listrFromList :: [i] -> (forall n. ListR n i -> r) -> r +listrFromList [] k = k ZR +listrFromList (x : xs) k = listrFromList xs $ \l -> k (x ::: l) + +listrHead :: ListR (n + 1) i -> i +listrHead (i ::: _) = i +listrHead ZR = error "unreachable" + +listrTail :: ListR (n + 1) i -> ListR n i +listrTail (_ ::: sh) = sh +listrTail ZR = error "unreachable" + +listrInit :: ListR (n + 1) i -> ListR n i +listrInit (n ::: sh@(_ ::: _)) = n ::: listrInit sh +listrInit (_ ::: ZR) = ZR +listrInit ZR = error "unreachable" + +listrLast :: ListR (n + 1) i -> i +listrLast (_ ::: sh@(_ ::: _)) = listrLast sh +listrLast (n ::: ZR) = n +listrLast ZR = error "unreachable" + +-- | Performs a runtime check that the lengths are identical. +listrCast :: SNat n' -> ListR n i -> ListR n' i +listrCast = listrCastWithName "listrCast" + +listrIndex :: forall k n i. (k + 1 <= n) => SNat k -> ListR n i -> i +listrIndex SZ (x ::: _) = x +listrIndex (SS i) (_ ::: xs) | Refl <- lemLeqSuccSucc (Proxy @k) (Proxy @n) = listrIndex i xs +listrIndex _ ZR = error "k + 1 <= 0" + +listrZip :: ListR n i -> ListR n j -> ListR n (i, j) +listrZip ZR ZR = ZR +listrZip (i ::: irest) (j ::: jrest) = (i, j) ::: listrZip irest jrest +listrZip _ _ = error "listrZip: impossible pattern needlessly required" + +listrZipWith :: (i -> j -> k) -> ListR n i -> ListR n j -> ListR n k +listrZipWith _ ZR ZR = ZR +listrZipWith f (i ::: irest) (j ::: jrest) = + f i j ::: listrZipWith f irest jrest +listrZipWith _ _ _ = + error "listrZipWith: impossible pattern needlessly required" + +listrPermutePrefix :: forall i n. [Int] -> ListR n i -> ListR n i +listrPermutePrefix = \perm sh -> + listrFromList perm $ \sperm -> + case (listrRank sperm, listrRank sh) of + (permlen@SNat, shlen@SNat) -> case cmpNat permlen shlen of + LTI -> let (pre, post) = listrSplitAt permlen sh in listrAppend (applyPermRFull permlen sperm pre) post + EQI -> let (pre, post) = listrSplitAt permlen sh in listrAppend (applyPermRFull permlen sperm pre) post + GTI -> error $ "Length of permutation (" ++ show (fromSNat' permlen) ++ ")" + ++ " > length of shape (" ++ show (fromSNat' shlen) ++ ")" + where + listrSplitAt :: m <= n' => SNat m -> ListR n' i -> (ListR m i, ListR (n' - m) i) + listrSplitAt SZ sh = (ZR, sh) + listrSplitAt (SS m) (n ::: sh) = (\(pre, post) -> (n ::: pre, post)) (listrSplitAt m sh) + listrSplitAt SS{} ZR = error "m' + 1 <= 0" + + applyPermRFull :: SNat m -> ListR k Int -> ListR m i -> ListR k i + applyPermRFull _ ZR _ = ZR + applyPermRFull sm@SNat (i ::: perm) l = + TN.withSomeSNat (fromIntegral i) $ \si@(SNat :: SNat idx) -> + case cmpNat (SNat @(idx + 1)) sm of + LTI -> listrIndex si l ::: applyPermRFull sm perm l + EQI -> listrIndex si l ::: applyPermRFull sm perm l + GTI -> error "listrPermutePrefix: Index in permutation out of range" + + +-- * Ranked indices + +-- | An index into a rank-typed array. +type role IxR nominal representational +type IxR :: Nat -> Type -> Type +newtype IxR n i = IxR (ListR n i) + deriving (Eq, Ord, Generic) + deriving newtype (Functor, Foldable) + +pattern ZIR :: forall n i. () => n ~ 0 => IxR n i +pattern ZIR = IxR ZR + +pattern (:.:) + :: forall {n1} {i}. + forall n. (n + 1 ~ n1) + => i -> IxR n i -> IxR n1 i +pattern i :.: sh <- IxR (listrUncons -> Just (UnconsListRRes (IxR -> sh) i)) + where i :.: IxR sh = IxR (i ::: sh) +infixr 3 :.: + +{-# COMPLETE ZIR, (:.:) #-} + +-- For convenience, this contains regular 'Int's instead of bounded integers +-- (traditionally called \"@Fin@\"). +type IIxR n = IxR n Int + +#ifdef OXAR_DEFAULT_SHOW_INSTANCES +deriving instance Show i => Show (IxR n i) +#else +instance Show i => Show (IxR n i) where + showsPrec _ (IxR l) = listrShow shows l +#endif + +instance NFData i => NFData (IxR sh i) + +ixrLength :: IxR sh i -> Int +ixrLength (IxR l) = listrLength l + +ixrRank :: IxR n i -> SNat n +ixrRank (IxR sh) = listrRank sh + +ixrZero :: SNat n -> IIxR n +ixrZero SZ = ZIR +ixrZero (SS n) = 0 :.: ixrZero n + +ixrHead :: IxR (n + 1) i -> i +ixrHead (IxR list) = listrHead list + +ixrTail :: IxR (n + 1) i -> IxR n i +ixrTail (IxR list) = IxR (listrTail list) + +ixrInit :: IxR (n + 1) i -> IxR n i +ixrInit (IxR list) = IxR (listrInit list) + +ixrLast :: IxR (n + 1) i -> i +ixrLast (IxR list) = listrLast list + +-- | Performs a runtime check that the lengths are identical. +ixrCast :: SNat n' -> IxR n i -> IxR n' i +ixrCast n (IxR idx) = IxR (listrCastWithName "ixrCast" n idx) + +ixrAppend :: forall n m i. IxR n i -> IxR m i -> IxR (n + m) i +ixrAppend = coerce (listrAppend @_ @i) + +ixrZip :: IxR n i -> IxR n j -> IxR n (i, j) +ixrZip (IxR l1) (IxR l2) = IxR $ listrZip l1 l2 + +ixrZipWith :: (i -> j -> k) -> IxR n i -> IxR n j -> IxR n k +ixrZipWith f (IxR l1) (IxR l2) = IxR $ listrZipWith f l1 l2 + +ixrPermutePrefix :: forall n i. [Int] -> IxR n i -> IxR n i +ixrPermutePrefix = coerce (listrPermutePrefix @i) + + +-- * Ranked shapes + +type role ShR nominal representational +type ShR :: Nat -> Type -> Type +newtype ShR n i = ShR (ListR n i) + deriving (Eq, Ord, Generic) + deriving newtype (Functor, Foldable) + +pattern ZSR :: forall n i. () => n ~ 0 => ShR n i +pattern ZSR = ShR ZR + +pattern (:$:) + :: forall {n1} {i}. + forall n. (n + 1 ~ n1) + => i -> ShR n i -> ShR n1 i +pattern i :$: sh <- ShR (listrUncons -> Just (UnconsListRRes (ShR -> sh) i)) + where i :$: ShR sh = ShR (i ::: sh) +infixr 3 :$: + +{-# COMPLETE ZSR, (:$:) #-} + +type IShR n = ShR n Int + +#ifdef OXAR_DEFAULT_SHOW_INSTANCES +deriving instance Show i => Show (ShR n i) +#else +instance Show i => Show (ShR n i) where + showsPrec _ (ShR l) = listrShow shows l +#endif + +instance NFData i => NFData (ShR sh i) + +-- | This checks only whether the ranks are equal, not whether the actual +-- values are. +shrEqRank :: ShR n i -> ShR n' i -> Maybe (n :~: n') +shrEqRank (ShR sh) (ShR sh') = listrEqRank sh sh' + +-- | This compares the shapes for value equality. +shrEqual :: Eq i => ShR n i -> ShR n' i -> Maybe (n :~: n') +shrEqual (ShR sh) (ShR sh') = listrEqual sh sh' + +shrLength :: ShR sh i -> Int +shrLength (ShR l) = listrLength l + +-- | This function can also be used to conjure up a 'KnownNat' dictionary; +-- pattern matching on the returned 'SNat' with the 'pattern SNat' pattern +-- synonym yields 'KnownNat' evidence. +shrRank :: ShR n i -> SNat n +shrRank (ShR sh) = listrRank sh + +-- | The number of elements in an array described by this shape. +shrSize :: IShR n -> Int +shrSize ZSR = 1 +shrSize (n :$: sh) = n * shrSize sh + +shrHead :: ShR (n + 1) i -> i +shrHead (ShR list) = listrHead list + +shrTail :: ShR (n + 1) i -> ShR n i +shrTail (ShR list) = ShR (listrTail list) + +shrInit :: ShR (n + 1) i -> ShR n i +shrInit (ShR list) = ShR (listrInit list) + +shrLast :: ShR (n + 1) i -> i +shrLast (ShR list) = listrLast list + +-- | Performs a runtime check that the lengths are identical. +shrCast :: SNat n' -> ShR n i -> ShR n' i +shrCast n (ShR sh) = ShR (listrCastWithName "shrCast" n sh) + +shrAppend :: forall n m i. ShR n i -> ShR m i -> ShR (n + m) i +shrAppend = coerce (listrAppend @_ @i) + +shrZip :: ShR n i -> ShR n j -> ShR n (i, j) +shrZip (ShR l1) (ShR l2) = ShR $ listrZip l1 l2 + +shrZipWith :: (i -> j -> k) -> ShR n i -> ShR n j -> ShR n k +shrZipWith f (ShR l1) (ShR l2) = ShR $ listrZipWith f l1 l2 + +shrPermutePrefix :: forall n i. [Int] -> ShR n i -> ShR n i +shrPermutePrefix = coerce (listrPermutePrefix @i) + + +-- | Untyped: length is checked at runtime. +instance KnownNat n => IsList (ListR n i) where + type Item (ListR n i) = i + fromList topl = go (SNat @n) topl + where + go :: SNat n' -> [i] -> ListR n' i + go SZ [] = ZR + go (SS n) (i : is) = i ::: go n is + go _ _ = error $ "IsList(ListR): Mismatched list length (type says " + ++ show (fromSNat (SNat @n)) ++ ", list has length " + ++ show (length topl) ++ ")" + toList = Foldable.toList + +-- | Untyped: length is checked at runtime. +instance KnownNat n => IsList (IxR n i) where + type Item (IxR n i) = i + fromList = IxR . IsList.fromList + toList = Foldable.toList + +-- | Untyped: length is checked at runtime. +instance KnownNat n => IsList (ShR n i) where + type Item (ShR n i) = i + fromList = ShR . IsList.fromList + toList = Foldable.toList + + +-- * Internal helper functions + +listrCastWithName :: String -> SNat n' -> ListR n i -> ListR n' i +listrCastWithName _ SZ ZR = ZR +listrCastWithName name (SS n) (i ::: idx) = i ::: listrCastWithName name n idx +listrCastWithName name _ _ = error $ name ++ ": ranks don't match" |